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‘*he Finite Analyuvic lteti.od

This monograph contains the ifundamental developnent of
cne new nunericali metnod called the "Finite analytic" meihod,
The finite analytic method differs fron the finite difference
ethod and the finite element methou. ‘The basic idea ot che
finite analytic method is the incorporation of local analytic
solutions in the nunerical solution of linear or nonlinear
partial differential equations. In the finite analytic method,
the total problem is subdivided into a number of small
elements. The local analytic solution is obtained for the
small element in which the governing equation, 1if nonlinear,
is linearized. The local analytic solutions are then expressed
in algebraic form und are overlapped to cover the entire
region of the problem. The assembly ovr these local analytic
solutions, wi: 'h stiil preserves the overall nonlinearity of
the governing equation, results in a system ot linear
algebraic equations. The system of algebraic equations 1is then
solved to provide the numerical soiutions oL the total prupleni.

Unlike the finite difference method, the finite analytic
method does not tamper with the differentials or the
derivatives of the governing equat:ion, nor does the analytic
method need the shape tunction which is made to satisty the
integral form of the governing equation, as in the finite
clement method. The finite analytic solution obtained trom the
tinite analytic method is differcntiable. As a result, the
derivative of the solution obtained analytically is much more
reliable. In this monograph the finite analytic solution 1is
shown to be stable, even when the highest derivative term ot
the partial differential equation is multiplied by a small
tactor, such as one over Reynolds number, It 1s also shown that
the finite analytic solution for Nuvier-stokes equations at
nigh Reynolds numbers automatically provides a gradual shift
of the upwinding effect, Therefore the tinite analytic solution
accurately simulates the eifect ol convection and eliminates
the false numerical diftusion that would occur in the upwinding
difference or unidirection difference used in the finite
ditference or the finite element methods, The computational
time for the finite anayltic solution is shown to be about
cqual to that ot the finite difference method. In certain cases,
due to the stability ot the system of algebraic equations
Jderived in the finite analyitc method, the overall computational
time can be even less. The finite analytic solution derived in
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the present analytic pnehtod is in 1ts most elementqrg form in
terms of accuracy. But it has already been showh Lo be
sufficient for the problens under consideration. Further
accurate finite analytic formulae can be derived and are

indicated in the monograph.

The finite anlytic method was develosed in early 1977,
when Dr. Peter Li was then a graduate student working on nis
doctoral aissertation with me. He had bcen having difficulty in
obtaining converyence of a system of finite difference
algebraic equations derived from the Navier-Stokes equations
for two-dimensional turbulent flow with u second-order
turbulent model. I conceived the finite analytic method one
night and solved the simple two-dimensional Laplace eguation.
Li then carried the finite analytic method to the unsteady
diitusion equation and nonlinear oldinary differential
equations and complted his Ph.D. dissertation in 1978.

In 1982 Dr. Hamn-Chiny Chen developed the finite analytic
metiiod further by solving the unsteady three-dimensional
tavicr-Stokes vyuations. This bound volune contains the
research results or Dr. Chen and myselt.
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ARSTRACT

Unateady 1D, 2D and 3D incompressible Navier-itokes
equations are numerically analyzed by a numerical scheme
called the "Finite Analytic Method". The basic idea of the
finite analytic method is the incorporation of a local
analytic solution in the numerical solution of linear and
nonlinear partial differential eguations. In this study,
the local a .alytic solutions for unsteady 1D, 2D and 3D
convective transport equations are obtained f{rom locally
linearized governing equations by specifying suitable
initial and bounduary conditions for cach local element.
When the local analytic solution is evaluated at a given
nodal point, it gives an analytic algebraic relationship
between a nodal value in a local element to its neighboring
nodal points. The solution of the problem is then achieved
by solving the system of algebraic equations.

Depending on the boundary and initial functions chosen
to represent the boundary and initial conditions for each
local element, 4 number ot local analytic solutions are
Jderived. The rvresults show that the boundary approximation
based on the combination ot exponential and linear function

is the best one since the boundary function thus constructed
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is the natural solution of the governing equation. The
finite analytic coefficients thus obtained are shown toibe
relatively simple and do give the correct asymptotic beha-
vior for both diffusion and convection dominated cases.

The finite analytic method is employed to solve several
steady and unsteady fluid flow problems. In two-dimensional
cases, the Navier-Stokes equations are formulated using
both vorticity-streamfunction and primitive variables. The
finite analytic numerical solution is first obtained for
starting cavity flow of Reynolds numbers of 100, 400, 1000,
2000 and 5000. Then the finite analytic formula is used to
obtain the numerical solutions for vortex shedding
phenomenon behind a rectangular block for Reynolds numbers
of 10, 50, 100, 200 and 500. In three dimensions, the
28-point finite analytic formula for unsteady convective
transport equation is employed to study a three-dimensional
cavity flow using primitive variable formulation. The
results are obtained for Reynolds numbers of 100 and 400.
In all test cases, the finite analytic solutions are shown

to be converge rapidly, and to be stable and accurate.

Rt
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CHAPTER 1T

INTRODUCTTON

For the differential equationy which ean not be nolyved
analytically, numcrical methods are employed. Most of the
numerical methods including the finite analytic (FA) method
presented in this study, bear the following similarities.
Firstly, all methods decompose the total region governed
by differe- tial eguations inro 4 number ot small elements
and grid points, and thus replace the continuous solution
of differential equation with discrete values at a tinite
number of grid points or elements. secondly, all methods
derive an algebraic equdtion from the differential equation
with suitable Jifference approximations or suitable protile
functions of dependent variables between nodal points or
in the whole local element . Thirdly, the resulting system
of algebraic equations is solved with given boundary and/or
initial conditions to obtain the numerical solutions for
all of the grid points.

The numerical methods are distinguished from one
another depending on how the corresponding algebraic
representation ot the Jdifferential equation is derived.

Two commonly used methods in deriving the discrete



algebraic equation in the finite difference method are
Taylor-series and control volume formulations. While for
the finite element method, the variational formuiations
and the method of weighted residuals are often used.

In Taylor-series formulation, the finite difference
algebraic equations are derived by approximating the
derivatives in the differential equation via u truncated
Taylor-series. Depending on the order of truncation, many
alternate finite difference representations can be obtained.
The validity of this formuiation, however, greatly depends
on how the truncation is made and how the difference is
taken. For example, a truncated Taylor-series representa-
tion of an exponential profile often leads to unreasonable
results since the truncated terns may be much larger than
the terms retained when large exponents are encountered.
Furthermore, since the Taylor-series formulation based on
term by term difference approximation largely ignores the
character of the partial differential equation, an accurate
term by term finite difference analog for a partial differ-
ential equation does not necessarily lead to higher
accuracy for the differential equation. (see Roache (11,
for example). In fact, large errors usually called
"Numerical diffusion” may result and instability of the
solution of difference equation is often encountered.

A simple variant of Taylcr-series formulation called

e e
B T A P



polynomial fitting [1] for obtaining the finite difference
expression is to fit an analytic function with free para-
meters to the mesh-point values and then to differentiate
the function analytically. When polynomials are used as
the interpolation function, it is very similar to the
Taylor-series formulation although not identical beyond
the second-order polynomials. This method, however, has
not been generally used because the higher order poly-
nomial fits are sensitive to "noise" or small errors in
the data.

In fiiite element methods, the two most commonly used
formulations in obtaining the discretization (element)
equations are the energy methods and the residual methods
[2]. Use of the energy procedures requires knowledge of
variational calculus. The calculus of variation shows that
solving a differential equation is equivalent to
minimizing a related quantity called the functional. This
equivalence is known as variational principle. Depending on
the functional considered, a number of variational
formulation can be employed to derive the discretized
element equations. For example, the principle of stationary
potential aid complementary energies and hybrid formu-
lations are commonly used in finite element applications.
The applicability of variational formulation in fluid

flow problems is, however, very limited because a




variational principle does not always exist for

differential equations governing the fluid flows.

The method of weighted residuals is based on
minimization of the residual left after an approximate
or trial solution is substituted into the differential
eguations governing a problem. The approximation function
is constructed in terms of some chosen known functions
and a number of undetermined parameters. The residual left
is then minimized in some integral sense with suitable
weighting functions to determine the unknown parameters.
Depending on the weighting functions chosen to perform tho
integrations, many different versions of the method can
be derived. Among them are collocation, subdomain, least
square and Galerkin methods. The acc .racy of these methods
are, however, highly affected by the trial functions and
weighting functions used. Unless the physically realistic
shape functions and weighting functions are employed, the
resulting discretization equations may lead to
unacceptable solutions.

Another finite difference method of obtaining the
algebraic equation is to express the conservation
principle for dependent variable for a finite control
volume, just as the differential equation expresses the
conservation laws for an infinitesimal control volume.

This can be done by integrating the differential equation
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over each non-overlapping control volume surrounding ecach
grid point. The control volume formulation can be regarderl
as a variant of subdomain method of the method of weighted
residuals, but is more physical in its basis. The accuracy
of this formulation is, however, still greatly dependent
on the interpolation functions used between nodal points.

The finite analytic method presented by Chen et al.
[3-8] invokes another means of deriving the algebraic
equations. Unlike the finite difference or finite element
method, the discretized algebraic equation is obtained
from the a..alytic solution for each local element in the
finite analytic formulation. Details of the principle and
procedures in obtaining the finite analytic solution are
presented in Chapter II.

In fluid flow and heat transfer problems, certain
difficiculties such as numerical instability, false
numerical diffusion and slow convergence are encountered
in solving Navier-Stokes equations and similar convective
transport equations when convective terms are significant.
In finite difference formulations,the difficulty of the
numerical instability has been overcome by considering a
central difference approximation for the ditfusion term
and a backward (upwind) difference for the convective

term [9,10]. Spadling [9] improved this result by

utilizing the exact solution for steady one-dimensional
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convective transport ecauation to derive an exponential
scheme , and then turther simplified to the hybrid scheme.
Runchal [10] compared the numerical solution of a simple
two-dimensional test problem obtained by hybrid scheme [9]
with those obtained by upwind and central difference
tormulations, and concluded that based on accuracy and
stability, the hybrid scheme is preferable. Patankar [11]
gave a better approximation called "power-law ccheme" to
the exact solution, and used it extensively in the control
volume formulations of 2D and 3D unsteady convect ive
transport problems.

The alleponitive coefficients for the resulting
algebraic ecquation thus obtained lcad to a stable solution
because the resulting system of alpebraic equations is
diagonally-dominant. However, as shown in Patankar [111,
the false numerical diffusion occurs when the {low is in
a skew direction to the grid lines, and when there is a
nonzero gradient of the dependent variables in the
direction normal to the flow. The false numerical dittusion
can be partially resolved by reducing the prid size o
taking more nodal points into account in the tormulation
of disceretization equations in each small locual element.
In two-dimensional problems, a number of finite difference

formulas were proposed, in additional to regular four node
Y

tormulation, to include part or all of the four corner
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points so that the false numerical diffusion can be

reduced. Works of Raithby [12] and Shay [13] which wil

(AR

be discussed in Chapter 1V are some examples. They are,

however, produced some undesirable negative coetficients
in the algebraic equation representing the partial
differential equation due to inadequate tinite difference
formulations. Furthermore, the extension ot the above
methods to three-dimensions to include 20 corner pointg
is not obvious or straightforwardl,

In finite clement formulation, a simple "upwind”

scheme was lerived in [14,15] by improving the weighting

I L D A L A

function of standard Galerkin formulation with modifying
functions and a set of optimal parameter:. The 9-point
formula thus obtained provides a pradual shift to upwind
when convective terms are signiticant, However, when
examining both the diftfusion and convection dominated
cases, it is found that the resulting 9-point formula [15]
does not pive the physically realistic asymptotic
behaviors. Besides. when nonunitorm grid spacing is
considerced, the results may become increasing unreasonable.
In finite analytic tormulation, the local analytic
solution for steady two-dimensional convective transport
equation in a small local element was obtained in Chen
et al. [4,61 by locally linearized the governing equations.

They adopted the second-order polvnomial to approximate
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the boundary condition for all boundaries in each local
element. When the local analytic solution is evaluated at

a given nodal point, a 9-point finite analytic algebraic
equation is obtained. The 9-point FA formula exhibits a
gradual, proper skew upwind shift, which is considerably
better than those given in [12-15]. However, for convection
dominated cases, i.e., at large cell Reynolds number or
Peclet number, the finite analytic algebraic equation

still produced some physically unrealistic, although small,
negative FA coefficients. While the finite analytic
solution given by Chen et al. [5,6] is stable

and accurate, the complexity of the local analytic

solution made it undesirable for extension to unsteady
three-dimensional fluid flow problems. It now becomes

clear that the appearance of small negative FA

coefficients and the complexity of analytic solution
originate from the polynomial approximaticn of boundary
conditions made for each local element.

In this dissertation, the finite analytic solutions
for unsteady 1D, 2D and 3D convective transport equations
are derived in uniform and nonuniform grid spacing local
elements. Significant improvements are reported in
two-dimensional case when compared with the finite analytic
solution obtained by Chen et al. [5,6]., In studying the

unsteady one-dimensional convective transport equations,
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a number of initial and boundary functions are used to
derive finite solutions. Three of them are employed to
solve some simple test problems. For two-dimensional
cases, the finite analytic solution for steady
two-dimensional Navier-Stokes equations derived by Chen
et al. [5,6] is modified by considering the boundary
approximation to be a combination of exponential ar.d
linear functions. Murthermore, an improved linearization
scheme is proposed so that the higher order variation or
convective terms in the local element can be properly
daccounted t.r. The finite analytic solution for nonuniform
grid spacing local element is then derived so that the
efficiency of computation is improved. As a result of
present study, a reasonable set of FA coefficients isg
obtained and computational time is shortened because of
the significant simplification of the FA formula.
Extending the two-dimensional study, a ?8~point finite
analytic formulae for unsteady three-dimensional convective
transport equations is similarly derived in a general
nonuniform grid spacing local element.

In Chapter II, the principle of finite analytic
method is outlined. It follows in Chapter ITI with the
finite analytic solutions for unsteady 1D, 2D and 3D
convective transport equations. A number of initial and

boundary functions are investigated in both uniform and

ot D
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nonuniform grid spacing local elements. A linearization
scheme associated with the higher order correction of
convective terms is also outlined. Details of the
derivations are given in Appendices A, B and C for 1D,
-4 2D and 3D cases respectively.

The finite analytic numerical solutions of steady
and unsteady convective transport equations for some

typical examples are given in Chapter IV. The accuracy of

the present FA method is demonstrated by a comparison of
FA coefficients with those 9-point formulas obtained in
finite differerne, finite element and those obtained in

- the early study of finite analytic methods.

In Chapter V, the detailed numerical procedures
associated with the finite analytic methods in solving
fluid flow or heat transfer problems are outlined. In
Chapter VI, simple test problems for one-dimensional
convective transport equation are numerically analyzed. 1
It follows in Chapter VII with two test problems of
simple geometry for two-dimensional Navier-Stokes
equations. The two-dimensional starting cavity flow is
investigated first with a range of Reynolds numbers using
both the vorticity-streamfunction and the primitive
variable formulations. The vortex shedding phenomenon is
then studied for uniform flows passing a rectangular

block at several Reynolds numbers. In Chapter VIII, the
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28-point A tormula for unsteady three-dimensional
convective transport equations is emploved to study the
side wall ettect tor cubic cavity flow.
The last chapter of this dissertation summaviccos
the hkey tindings and conclusions and sugpests tuture

resedarchen,

11
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CHAPTER II
PRINCIPLE OF FINITE ANALYTIC METHOD FOR

UNSTEADY THREE-DIMENSIONAL
CONVECTIVE TRANSPORT EQUATION

The basic idea of the finite analytic method is the
incorporation of a local analytic solution into the
numerical solution of the partial differential equations.
The finite analytic method decomposes the total region of
a problem governed by partial differential equations into
a number of small elements in which local analytic
solutions are obtained due to the simple geometry and to
local linearization in the case of nonlinear problems.
When the local analytic solution is evaluated at an
interior node, it gives an algebraic equation relating the
evaluated interior nodal value to its neighboring nodal
values. The numerical solution of the total problem is then
achieved by assembling and overlapping all local analytic
solutions.

To illustrate the basic principle, a partial
differential equation for unsteady three-dimensional flow
Ll(¢)= Fl is considered as an example, where the operator

1

source term. lLet x, y, z and t be the independent variables

.. can be linear or nonlinear, and F1 is an inhomogeneous
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in space and time, respectively. The PDE is to be solved in
the region D shown in Fig. 1. Let the boundary and initial
conditions be specified so that the problem is well-posed.
In order to solve the problem with the FA method, the
complex geometry of the problem is broken up into a number
of small elements where analytic solutions can be obtained.
Let thé region D be subdivided into small elements shown in
Fig. 1 by passing orthogonal planes through the region. A
typical local element with the nodal point P(i,j,k,n) may
be surrounded by the neighboring 26 points NET (northeast
top), ECT (~=astcenter top), EC (east center) etc. and those
of previous time steps, which correspond to points (1i+l,
j+l,k+1l,n), (i+l,j,k+1l,n), (i+l,j,k,n) etc. and those at
previous time steps n-1 and/or n-2 respectively.

Once the region D has been subdivided into small
rectangular elements, the analytic solution in each local
element may be obtained if the boundary and initial
conditions for that element are properly specified. In the
case when the PDE is nonlinear, the nonlinear equation may
be locally linearized in the small element. In this
fashion, the overall nonlinear effect can still be
approximately presented by the assembling of local analytic
solutions which constitute the numerical solution of the
governing PDE over the whole region D.

Let L(¢) = F be linear or linearized governing
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equation of L1(¢) = Fy in a small local element shown in
Fig. 1, so that an analytic solution can be obtained for
the local element as a function of the boundary and initial

conditions, i.e.,

o = f(fT(x,y,t), fB(x,y,t), fE(y,z,t), fw(y,z,t),

fN(x,z,t), fs(x,z,t), fI(x,y,z), hT, hB’

h t

W hN’ hs, 1, X, y, 2, t, F) (I11-1)

ok
where fI is the initial condition and fT’ fB’ fE’ fw, fN
and fS are the top, bottom, eastern, western, northern and
southern boundary conditions, respectively. hT, hB’ hE’ hw,
hys hS and 1 are respectively the grid sizes in x, y, 2
direction and the step size in time domain. For numerical
purpose, the boundary and initial conditions may be
approximately expressed in terms of the nodal values along
the boundary and also those values at the initial time

step. For example,

f1 = £C00prs Oqwre Popr ®swre *Eer fwerr *her
ORers Orc. ONpTec ISR (T1-2a)
and
£, = f(¢§§%, ...... oggl, ¢;Eé, ...... ¢SE],
IR oty %, v, 2 (IT-2b)

where ¢'s are the values of the dependent variables on nodal

L
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points, and the superscripts n and n-1 denote those values

L qqql
i
!
k.
3

at present and previous time steps respectively.

Substituting the boundary and initial conditions

i (II-2a) etc. and (I7-2b) into eq(I1I-11), one has
|
? - n n n n n
; o = floypro--o - ¢rc> ONEBO T ®pc Onpcee
n n-1 n-1 n-1 n-1
dgcr nprec ot $re » ONeRcCcct ®BC

n-1 n-1

SNECT T o5 7"s hps hys hp, My Ry R,

Ty Xy Yo 2, t, F) (I11=-3)

Evaluating eq(II-3) at an interior point P(0,0,0,1), one

has the one-time step 54 point finite analytic formula for
the interior nodal value ¢, as

26 27 i
op = I Cppépp * B chotens * CpFp (T1-4)
1 1

(] 1 . . .
where Cn s and Cn 1 s are FA coefficients obtained from the

local analytic solution, the subscript '""nb" denotes a
neighboring node to point P, and FP is the value of the
inhomogeneous term at the point P.

If steady 3D flow is considered, eq(I11-4) reduces
to a 27-point FA formula

26

+ bF

op = I Pdpnpy t Ppip

T
1
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In general, eq(II-4) may be derived for each unknown
nodal point P(i,j,k,n) in internal small elements
n i+l j+l k+1 n n

o0, = ) T I (1 -6_.6 .6_.0C" ¢
ijk p=i-1 q=3-1 pzk-1 Pi qj rk’“pqr’pqr

ez

i+l 3+l kel oL

+ L X z C C...F..
pzi-1 q=j-1 rzk-1 pqr¢pqr ijk ijk (I1-6)

where § ., 8§ . and § are Kronecker deltas defined as
pi’ "q] rk

s . = 1, if p=1

PL 9,  if p#i ste-

It should be remarked here that there are several
possible ways other than the one presented here that may be
employed to simulate the unsteady behavior of the problem.
For example, the two-time step FA formulation or hybrid FA
and FD formulation are possible alternatives. Because of
the parabolic behavior in time domain, the approximations
made on the unsteady may cause least problems. Thus, simpler
approximate formulas can be used to reduce the complexity
of unsteady flow problems, especially when the intermediate
time steps serve as a numerical step in obtaining steady
or large time solution. For simplicity and computational
economics, the hybrid method, which approximates the

unsteady term by a finite difference formula is adopted
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‘ in the present FA solution of unsteady two- and three-

limensional Navier-Stokes equations. For three-dimensional
case, a 28-point FA formula instead of the 54-point formula

(II-6) can be obtained for an internal node P(i,j,k,n), i.e,

.

i+l j+1 k+l
n n n n
of = o0 = 3 > Eo(1-6.6 .6_0C" ¢
P 13k © 5211 q=3-1 pek-1 pi~qj rk’ “pqrpqr
n-1 n-1 '
Cisk®isk * CisxFisx (1T-7)

The system of algebraic equations for all unknown nodes of
i, j, k at a given time interval n can be solved to provide

the finite analytic solution of the Navior-Stokes equations.
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CHAPTER III

FINITE ANALYTIC SOLUTIONS FOR UNSTEADY
CONVECTIVE TRANSPORT EQUATIONS

Fluid flow and heat transfer problems, in general,
are described by a set of partial differential equations
which are mathematical formulation of laws of conservation
of mass, momentum and energy. For example, if the fluid is
laminar, incompressible with a constant viscosity, the
conservation of mass and momentum equations are decoupled
from the conservation of energy equation, and can be written
in dimensionless form as

(1) Equation of Continuity

u +v +w. =0 (ITI-1)

up touu 4 vu,, twu, = -p 4 §€(uxx + Ugy tu, )
(III-2)

v, +uv_ + v+ wv_ = -p + ~:-L—-(v + v + v )

t X y z y Re " " xx vy zz
(IT1-3)

w, tuw, ¢+ Wy +ww, = -p, * é;(wxx + Wy tw,)
(ITI-u)

where x, y and z are dimensionless Cartesian coordinates
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normalized by a reference length L. u, v, w and p are
dimensionless velocities and pressure normalized respec-
tively by a reference velocity U and a reference pressure
pU2, and t is the dimensionless time coordinate normalized
by a reference time scale L/U. Re=%% is the Reynolds number.
The corresponding heat transfer in unsteady fluid flow can
also be found from the dimensionless energy equation

(3) Energy Equation (constant thermal conductivity k)

- 1
Tt~+uTx-+va~+sz = q-+§g-(Txx'+Tyy-*Tzz) (I11-5)

where the Peclet number Pe is PrRe, and Pr is the Prandtl
number, q is a heat source generated by radiation, viscous
dissipation, etc.

In many engineering applications, the physical
quantities considered may depend on one or two space
coordinate only. For these cases, eqs(III-1) thru (III-5)
can be further simplified, and the manipulation effort
required to obtain the analytic or numerical solution is
significantly reduced.

In this study, the FA method is first employed to
obtain the finite analytic solutions of simple 1D problems.
Alternatives for ‘the boundary and initial functions are
investigated in this simple case. The optimal one is then

extended to derive the finite analytic solution for two and

three dimensional fluid flow and heat transfer problems.
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I1I-1 Finite Analytic Scl utlons for Unsteady One-Dimensional
Tonvective Transport Equations

For some extremely simple or simplified fluid flow
and heat transfer problems which depend on only one space
coordinate, an unsteady one-dimensional convective transport

equation of the form of

by ° R(¢t + u¢x) + F(x,t) (I11-6)

is often encountered, where the convective velocity u may
be a function of independent variables x, t and dependent
variable ¢. For example, the Burgers' equation which was
introduced by Burgers [16] as a simple model for the
one-dimensional fluid flow is the one with u =¢ and F = 0.

Except for some simple cases, the analytic solution
for eq(III-6) may not exist due to the nonlinearity,
complicated convective velocity and source function, and/or
complex initial and boundary conditions. Thus the finite
analytic numerical method is employed in this study to
formulate the discretization equations, so that an
approximate numerical solution can be obtained.

Considered a domain D shown in Fig. 2. For numerical
purposes, the region D is subdividel into many small
elements, and the analytic solution is sought in
each local element. A typical two-time step local element

shown in Fig. 2(b) for point NC(i,n) is surrounded by
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neighboring nodal points NW, NE and WS, EC, SW, SC ans 8B
of previoua time stepa, which corvespond to (1=1,n),
G,y (== )t n=l), (=l n=M), (i,n=0) an
Citlin-2) vespectivelv: On the uther hand, an one=time step
tocal element for point Bi,n) i aurvounded by nodal
points W, B SW, 8C, and SE as shown in Pig. Joe),

Atter dividing the vegion I inte amall element:,
complex initial and boundary conditions may be approvimat cd
by same aimple initial and boundary tunctions, =0 that an
analytic zolution can be derived. However, even tor usuch
simple i fal and boundavy conditions, the analytic
solution may still be difficult to obtain due to the
complivated dependence of uoand I on independent and “op
dependent variables. In thia sttuation, the convect ive
tranaport equation ¢111-8) {x turther simplitied by
Approximat ing the convecrtive velocity an a4 conntant over

A small loval element | e,

... ¢ JAP v ke

PNt -
N N . PNt il

where A :; KUy R Ry and U fn a vepresentat ive conntant
velocity over the tocal element .

Fauation (111=7) bacomesn a linear partial dittevential
equat ion ot conatant coettivients, At this stage, the

gource term PO, t)) may be taken care of eanily by g

particular asovlution, Thur, only the homogeneou:n convect fve
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Oy = 2AD, + BO, (111-8)

is considered in the following derivations.

Depending on the boundary and initial functions chosen
to approximate the boundary and initial conditions for
different local elements, three FA solutions are given to
illustrate the basic principle of the finite analytic
method. Threc solutions of eq(III-8) are distinguished by
the following formulations.

(1) FA formulation of eq(III-8) with second-order
polynomial approximation for both initial and
boundary functions.

(2) FA formulation of eq(III-8) with exponential and
linear approximation for initial function and
linear approximation for boundary functions.

(3) FA formulation of eq(II1I-8) with unsteady term
approximated by a finite difference formula. This
is a hybrid FA-FD method.

1IT-1-1 FA formulation of Unsteady One-Dimensional
Convective Transport Equation with
Second-Order Polynomial Initial and
Boundary Functions
In this section, the linear or linearized unsteady

one-dimensional convective transport equation (IIT-8) is
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solved by finite analytic numerical method in a two-time
step local element shown in Fig. 2(b). For the convective
transport equation to be well-posed in the local element
: shown, an initial condition ¢I(x) and two boundary condi-
tions ¢w(t) and ¢E(t) must be properly specified along the
= south, west and east sides of the local element respec-
tively. Since each side, for numerical purpose, has three
nodal values available, one may approximate the initial
and boundary conditions by suitable initial and boundary
functions which are expressed in terms of these nodal
values. The e are several initial and boundary functions
which may be used to obtain the approximate initial and
boundary conditions. In this case, a second-order poly-
nomial is employed to approximate both the initial and

boundary conditions as follows

- - 2

$(x,0) = ¢I(x) = ag * bgx + cgx (III-Sa)
- - 2

¢(-h,t)= ¢w(t) = a, + byt + oyt (III-9b)
- - 2 -

p(h,t) = ¢E(t) = ap * bpt + opt (III-9c)

where

LR B A LS

21 _
égc>  Pg T 7Ridsp ~ Ogu’>

1
;;7(°SE tobgy - 265¢0)

i 1
= by by = 7x(40yc = Idgy - bnw’
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w52 %sw et 20uc)
a. = ¢ br = (b = 3o b
: E SE’ E- 2t *ecC SE ~*NE
3 Cp T 2 (ber + by - 26.)
E 9 2" 'SE NE EC
T
C The linear partial differential equation (III-8) with

initial condition (IIT-9a) and boundary conditions (III-9b)
and (IIT-9¢c) can then be solved analytically by the method
of separation of variables. Details of the derivation are
given in Sec. A-1 of Appendix A. The local analytic
solution wnen evaluated at the North-Center node (0,21)
gives a finite analytic algebraic equation relating

the interior nodal value ¢yc and its 7 neighboring nodal

values as follows

*Ne T Cnwbnw * ONEONE * Cwctwe * Cec®re * Cswlsw
* Copdsg * Csetse (1I1-10)
; where
3 2 22
v __Ah Bh Bh
{ Caw = ¢ [Q - 5P, + Q) + b(3e-)(Qy = Py)]
. ~2Ah
CNE = e CNW
2 2 2
_ _Ah Bh Bh )
Cyc = © [l&(y?—)(P2 +Q,) - 8(77_) (Q3 P3)}
_ _-2Ah
CEC = e ch




ORIGINAL FAGE !9
OF POOR QUALITY

Bh*

. _Ah N : 2
an : e [-}? - 3AhP2 + 4(Ah) Py - (5-1-—)(31‘2 + QQ)
Bn’ 2 -Ah 2
+ '4(:5?") (Q} - P3)] +e [-Pz » Ahp.z + u(Ah) P?]
o= e”APp v 3anp, + uCA)?P Bhlyap, + Q)
SE © ¢ -Py ? 3 - 37 2 v Q

2
Bh A

N “‘??”2(Q3 - PO s AP [op, - ANP, + u(an) e, 1

e = oA (Hp. s uAnp, -8(ARY P, omAD

¢ [2p, - “ARP,

- B(ARY P,
where P,, P,, Ql‘ Q. and Q3 are defined by

w  (-1)™ h o2 T
m

P, = X R i = 2,3 (I111-11a)

m=1 [(Ah)2+(xmh)2)1

w -(-1)™ n
Q; = 7T SO | I — iz 1,2,3 (ITI-11b)
m=l Coany a0y 2P
m
2, 2
(Ah) *('mh) 1
with 2F 1 = ———>5— - and th = (m - f)ﬂ

Bh /21

Three ot the five summation terms Ql‘ Q? and Q3 may

be expressed analytically as those given in Appendix A to

save some computational time, i.e.,
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0, = 20 (ITI-12D)
2 y(Ah)cosh?An
Q, : _m.l s sighAh \
3 18(AN)  coshAh  16(Ah)‘cosh® Ah
LS (II1T-120)
- al ’X’“ '—""T ——— -— (

S3(Ah)“cosh™ Ah

It is noted that the TA coefficients in eq(TII-10)

Bh’ .
ot Ah and z=— only. The ratio ot the para-

are tunction:s
21

2Ar Ut _ .

—“- = -ﬁ = \0 18 rl].

meters known to be the Courant number

Thus. the FA coetticients can also be written as

- _ _Ah N
Cyw = © [Ql - L-G(r +3Q.) ¢ u(——) (Qy - 3)]
. _ = Ah
“np TOf Cnw
- . Ah JWAh . Ah _
(W(‘ § (\" ) l}? + Q2 . (L‘— )(Q“ P\‘)l
0 0
. ..~ TAh
‘e T e

Cqg = € [=(Le3ARIT, + w(AM P, - 5~)(1P +Q,)

~-Ah

R u(ﬁp)(Q,-P )l o+ e

(

[(-1+ARID, + u(Ah)2P3]
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Cqp eAh.[(-1+3Ah)P2 + uam’p, - (%%)(3P2+Q2)
+ u(%%)Q(Q3—P3)] v MM oranp, sucan?p,)

Coe = e [201+2a00P, - 8(AM 1T + ™M [20¢1-2a0)P,
- 8(AR)?p, ] (III-13)

It should be remarked here that a simpler FA solution

based on linear boundary conditions can be derived easily
in an one-time step local element by letting dwe 0.5(¢Nw
+ ¢Sw) and ¢pn = O.5(¢NE + ¢SE) in eq(TII-10). The
one-time step FA formula thus obtained is used for initial
time step of calculation with a time increment of 0.5T,
The two-time step FA formula is then employed to obtain
the subsequent FA numerical solutions.
I1I-1~2 FA Formulation of Unsteady One-Dimensional Convec-

tive Transport Equation with Exponential and Linear

Initial Function and Linear Boundary Functions

In the previous formulation, some of the FA

coefficients in eq(III-10) may become negative for many
combinations of Ah and Courant number Yo+ The negative TA
coefficients although small, may result in an unrealistic

overshoot for some of the problems considered. In order to

avoid thesc unrealistic nepative FA coefficients, an expo-

nential and linear function based on the natural solutions
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¢ (e?Ax,Bx-QAt) of eq(III-8) is employed in this formulation

to approximate the initial condition for the one-time step
local element shown in Fig. 2(c). As to the boundary
conditions, simple linear boundary functions are used in

terms of two nodal variables available on each boundary.

2Ax
¢(x,0) =¢I(x) z aS(e - 1) + bgx + cg (ITI-1ua)
¢(-h,t)=¢w(t) = a, ¢ bwt (IITI-14Db)
¢C(h,t) =¢E(t) = ap + bpt (III-14c)
where
L . PsE * %sw T%%sc
S usinh?Ah
oL ¢SE - ¢Sw - cothAh(¢SR + ¢Sw - 2¢SC)
S ” 2h
Cs = ¢5¢
e = Psw
Ay = gue by = T
b = 0
. _ TEC SE
ap = dgp» bp = — =

After specifying the initial and boundary conditions

(TIT-14a) - (TTI-14c) for the small local element shown 1in

is then solved analytically by the method of separation of

variables. The local analytic solution when evaluated at

"ig. 2(c), the linear convective transport equation (TIIT-8)
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the interior point P(0,1) will result in a finite analytic
algebraic equation relating the interior nodal value ¢p to

its 5 neighboring nodal values, i.e.,

®p = Cuctuc * Cectre * Cswbsw * Csrtsy * Cgefse
(III-15%)
where
2
. _Ah Bh
Cuc = ¢ [Q + —=—(Py- Q)]
_ _2aAn
Cpe = © Cuc
Ah . Bh°
Coy = © [ —(Q, - P,) - 2Ah cothAh P2]
_ _-2an
Csp = e Cow
CSC = UAh coshAh cothAh P2

Details of the derivation are given in Sec. A-2 of Appendix
A. Equation (III-15) can also be expressed in terms of the

Courant number C0 and the other parameter Ah as follows

Cuc = s,

Cge = e,

Coy ° eAhs? (I1I-16)
cgp = e s,

CSC = 4Ah coshAh cothAh P

2

where
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. 2Ah,,
517 7, P2 = Q) v
and

. 2Ah

IITI-1-3 Hybrid FA Formulation of Unsteady One-Dimensional
Convective Transport Equation
In order to reduce the manipulation effort and compu-
tational time, an alternative hybrid FA solution of
one-dimensional convective transport equation (III-8) may
be derived where an approximation for unsteady term may
be used. For example, one may approximate the unsteady

term by a simple finite difference formula.

¢p - ¢
B¢, = B —E-;—*ég zconstant = g (111-17)

so that the unsteady convective transport equation (III-8)
is reduced to be a steady-like convective transport
equation with the unsteady term absorbed in a constant

source term g for the local element as follows

dx = 2A¢, t 2 (1I1-18)

The finite analvtic algebraic equation can be derived

easilv as that shown in Sec. A=3 of Appendix A.
pp

Ah -Ah
e byc t e

®eC  tanhAh . 2

’P z gh (I11-19)

AN AR AR
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By substituting the expression of g into eq(III-19), a

4-point hybrid FA formula (see Fig. 1(c)) is obtained

%p = Cuclue * Crefec * Csedse (I1I1-20)
< it (b b+ bl b b b ) (I11-204q)
17+ b5, wehwe * Pecfre * Psetse -
where
2
_ Bh® tanhAh _ 1
bse = 77 AL T ¢, tanhAn
_ LAh
we T TAR . -AR
_Ah
b = €
£C © AR , AR

It is noted that eq(III-17) is the only approximation
made in the derivation of the hybrid FA formula (1T1I-20),
thus, the three-point steady state finite analytic soluticn
can be obtained from eq(III-19) or (ITI-20) by simply

letting g = 0 or B = 0. Which is

eAh°wc te 0
bp = AR i (TII-21)

o™t in equation (III-15), i.e., ¢p = ¢

¢WC’ ¢SE = ¢EC’ the same steady-state solution

By equating ¢"

sc?
Ysw *
(IT1-21) is recovered in the formulation using exponential

and linear initial function and linear boundary functions.
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III-2 Finite Analytic Solutions for Unsteady Two-Dimensional
Tonvective Transport Equations

For unsteady fluid flow and heat transfer problems
which depend on only two space variables, the dimensionless
equation of continuity (ITI-1), momentum equation (III-2)
thru (III-4) and energy equation (III-5) are simplified

respectively to be

u + v =20 (I11-22)
X y
- s
u, +ouu 4 vu,, = Py * ®e (uxx + uyy) (I11-23)
- 1
ve tuv 4 A ~Py * % (vXx + Vyy) (III-24)
T. + ul_ + VT =g+ = (T__ +T_ ) (I11I-25)
t X y Pe XX vy

If vorticity-streamfunction formulation is considered
by eliminating the pressure term from eq(III-23) and

(III-24), a vorticity transport equation can be obtained

1

£, * ug, + vgy * Re (5xx + gyy) (ITI1-26)
where vorticity ¢ is defined by

£ = v, - uy = —(wxx + wyy) (I1I1-27)
with u = wy and v = -y (I1II-28)

where the streamfunction y is defined by eq(III-28), so
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that the equation of continuity (II1-22) is automatically
satisfied.
Either in vorticity-streamtunction (p,£,T) or in
primitive variables (u,v,p,T) formulation, a convective

transport equation ot the form of

dyx * byy =R (¢, ﬁ ug ¢+ v¢y) + T (TIL-29)

is often encountered in solving two-dimensional fluid flow
or heat truansfer problems. Where ¢ may represent
velocities (R=Re), vorticity (R=Re), temperature (R=Pe)

or streamfunction (R=0). The convective velocities u, Vv
and the source term F, in general, are functions of
independent variables x, y, t and dependent variables

¢j (e.g., uy, v, py Ts ¥ or £) including ¢ itself. Fquation

(I11-29) may also be written in conservative form by

applying the equation of continuity (I111-22)

S t ¢yy = R [¢t + (u¢)x + (v¢)y] + T (I11-30)

In most of the engineering applications, the analytic
solution of eq(I11-23) or (III-30) may not be available
due to the complex geometry and boundary conditions,
nonlinearity of the equation and also the coupling of the
variables. Thus, the finite analytic numerical method is

used to tormulate the discretization equation for ¢, so

that an approximate numerical solution can be obtained.




ORIGINAL PAGE S
OF POOR QUALITY 34

I1I-2-1 Method of lLinearization

To implement the FA method, the flow region as shown
in Fig. 3 is subdivided into a number of small elements by
passing orthogonal lines through the region. A typical
local element with the interior nodal point P(i,j,n) may
be surrounded by the neighboring points EC (East center),
WC (West Center), NC (North Center), SC (South Center),

NI (Northeast), NW (Northwest), SE (Southeast), SW
(Southwest) and those of previous time step, which corres-
ponding to (i+l,j,n), (i-1,j,n), (i,j+1,n), (i,j-1,n),
(1+1,341,n), (i-1,j+1,n), (i+1,3-1,n), (i-1,3-1,n) and
those at previous time step tn—l respectively.

Fven in the local element of such a simple geometry,
the analytic solution for eq(IIT-8) or (III-9) may still
be difficult to obtain due to the coupling of variables,
nonlinearity of equation and the complicated source
function. In this situation, a linearization scheme
outlined in the following is employed to obtain the nomi-
nally linear convective transport equation, su that the
analytic solution -an be derived in each local element .

Considering the convective transport equation of
conservation form (I1I-30) as an example, in order to solve
eq(ITI-30) analytically in each local element, eq(IT1I1-30)

is first rearranged to be

T
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® x '*yy = R (¢, + Uy ¢ V¢y) + 1+ R lhv¢)x

'$). ] (111-31)
(v'¢ y

with

u(x.y.t,¢j) s U+ u'(x,y‘t,wj) (IT1=-31a)
v(x,y,t,¢j) vV + v'(x,y.t,@i) (ITT-31L)

where U and V are representative constant values in the
local element, for example, the velocities at the interior
point P or the area-averaged velocities over the local
element . And b3 may be any dependent variable including

¢ itselt.

When the local element is small enough, the Jdeviations
u' and v' trom U and V should be small also. Therefore,
the term R[(u'¢)x + (v'¢)vl may be considered as a higher
order correction to the convective term in which the
convection of $§ variable in the element is carrvied by
constant velocities U and V. Denoting two time steps Yo
and tn‘ one may locally linearize  the convective transport
equation (1I11-31) by approximating the source tunction and
hipher order correction term as a function known from

previous time step t (or trom the previous iteration

-1

in iterdative steady-state method), i.e.,

Oex * 4y

n . 1 -n-1
) == R (¢' + U¢x + v¢y)‘ ¢+ (x‘y,oi)

(111=-32)
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f(x,y,t,¢j) = F(x,y,t,¢j) + R [Cu'e) + (v'cp)y]

In this fashion, eq(III-30) is locally linearized to
be a nominally linear partial differential equation of
constant coefficients at nth time step. Various solution
methods as those described in Section III-1 for unsteady
one-dimensional problems can thus be employed to derive
the analytic solution for the linearized elliptic-parabolic
partial differential equation (IT1-3?). (elliptic in space
and parabolic in time in space-time variables)

In previous formulations for one-dimensional problems,
it is learned that different approximations to the unsteady
term may result in different intermediate profile and
speed of propagation, however, there is no direct effect
on the steady-state solution profile. Furthermore, because
of the parabolic nature in time domain and that the time
derivative appears only in one term of eq(III-32), it
s possible to adopt a simple approximation for unsteady
term with a reasonable transient solution profile. Thus,
the simple hybrid FA formula outlined in Sec. II1I-1-3 is
used in this study to reduce the complexity of the
derivation and to save the computational time. In the
hybrid FA formulation, the unsteady term is then approxi.-
mated by

i

ROf = R T —— = constant (I11-33)
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where v = t_ - tal is the time increment, and the subscript

P denotes the interior node P of the Tocal element.

S TRRIES T LT LR LB, L

In addition, the nonhomogeneous part fn'l(x,y,¢j) of

eq(IIT-32) can also be approximated by a representative

constant value fp in the local element, so that the

manipulation eftort and computational time required can

be further reduced. Under these approximations, the

unsteady two-dimensional convective transport equation

(T11-30) is simpliticd to be a nominally linear elliptic-

l1ike PDE with constant inhomogeneous term

by * Oy T RS T 2B, * 8 (IT1-34)
1 1
where A= 5 RU, B = 5 RV (IT1I-34a)
R n n-1 .
and g ° 7 (¢P - ¢p ) + fp = constant (IIT-34b)

[t should be remarked here that the constants A, B

and g may differ from one element to another, so that the

overall nonlinearity is approximately preserved. And the

AR LA LRl LRI R G L

coupliny nature of variables can aluo be approximately

preserved by solving the interlinked equations subse-

quently in each time step.

Since the initial condition has been taken care of

by approximating the unsteady term by a finite difference,

the equivalent elliptic PDE (I1I-34) can then be solved

analytically if the boundary conditions are properly
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specified. A typical local element for eq(III-34) at time
step tn (or at t = ¢ in Fig. 3) is enclosed by four
boundaries (East, West, North and south), where each
boundary for the numerical purpose has three nodes. Thus,
the boundary conditions for linearized convective transport
equation (III-34) may be approximately specified by these
eight nodal values in the boundaries. In this study, three
local analytic solutions for different local element and
boundary approximations will be derived in the following

(1) Uniform grid spacing local element (hE=hw=h, thhg

k) with exponential and linear boundary approxi-
mations. (Fig. 4(a))
(2) Nonuniform grid spacing local element (hE # hw,
hN # hS) with exponential and linear boundary
approximations. (Fig. 4(b))
(3) Uniform grid spacing local element with
piecewise-linear boundary approximations. (Fig. u(a))
ITI-2-2 FA Formulation of Unsteady Two-Dimensional
Convective Transport Equation for Uniform Grid

Spacing Local Element with Exponential and
Linear Boundary Approximations.

Chen et. al. [5,6] developed a FA solution to solve

the steady vorticity transport equation

fex &yv = QAEX + QBgy (IT1-35)
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in a uniform grid local element as shown in Fig. u(a). In
their formulation, eq(1II-35), which is a special case of
eq(III-34) with g = 0, is solved by using the second-order
polynomial boundary approximations on each boundary. lor

example, the east boundary condit ion &F(x) is approximated

by
E-(x) = a, + a + a 2
E 0 1Y 2Y
where a, = § a., = 1 (& - £..)
0 EC? 1 2k " "NE °ST
and a. = L o(e. o+ Bl - 28.2)
2 o2 NE ST "EC

The linear homogeneous vorticity transport equation
(I1I1-35) is then solved analytically by the method of
separation of variables. The finite analytic solution

when evaluated at the center node P gives

€P=C + C + C + + C

ECEEC WCQWC NCgNC CSCg‘SC NEENE

+ CngNw + CSEESE + Cswgsw (I11-36)

The expressions of FA coefficients CEC’ CWC etc.
can be found in Chen et. al. (5,61, It exhibits a gradual
upwind shift, which is considerably better than those
given by FD or FE methods f11 - 15]). However, the calcu-

lation of FA coefficients are rather time consuming, and

some of the FA coefficients although small will become
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negative when convective velocities are large. These
negative FA coefficients are physically unrealistic (111,

since the contribution from diffusion should be positive

for all physical problems.

After further investigation, it now becomes clear

that these negative FA coefficients originate from the

boundary approximations. For example, let us consider

the limiting case of negligible diffusion (i.e., Re + )

where eq (IIT-35) is reduced to

2A£x + 2Bgy =0 (I11-37)

The exact solution for this first-order hyperbolic

equation is known to be

B (IT1-38)

If second-order boundary approximation is used to

approximate the south boundary condition (i.e., now the

initial condition for eq(III-37)) for the case 0 < Ak < Bh,

the analytic solution evaluated at center node P will give

Tl
o
"

r - 2 r
7—(r*1)gsw t (1-r )ESC + 7-(r—l)§SE

+

Cswisw * Csobse * Copbup (I11-39)

r = BE ° O<rci
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From eq(III-39) it is seen that the coefficient Cse
is always negative, and the maximum negative value, which

occurs at r = 0.5, will be -0.125.

In order to construct a better boundary approximation
for convective transport equation (LTI-34) or (II1-35),
the steady one-dimensional convective transport equation

is investigated at first

b = A0+ g (ITI-40)

Equation (III-40) is exactly the same as equation
(ITI-18) considered previously, the exact solution is

given in Sec. A-3, and the derivative at point P can also

be derived.

o

. A ) g,y . )
% |, © sinhzan ‘¢g “¢y * Fh) - 4 (ITI-41)

P

o=

For the case g = 0, the solution (A-42) of eq(ITI-40)
as a function of convective velocity U or parameter Ah,
which has been discussed by Spadling 9], Patankar [11]
and others, is plotted in Fig. 5.

It can be seen that when Ah changes from pure
diffusion case (Ah = 0) to convective dominant cases
C |Ah] >> 1), the exact solution at center point P (i.e.,
eq(III-21)) exhibits a gradual shift to upwind and the

derivative at point P gradually decreases to zero. If

secon.-order polynomial boundary approeximation is used

DIV T Ty P T I S Y
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to approximate the exact solution, negative or dvershoot
may occur at large Ah or convective velocity as that shown
in Fig. 5. Furthermore, the derivative at point P is much
larger than the true value. Thus, use of second-order
polynomial as boundary functions may overestimate the
diffusion effect at large convective velocities. On the
other hand, use of the piecewise-linear boundary approxi-
mation shown in Fig. S5 will give a much better representa-
tion of upstream solution, however, the diffusion effect
may be overestimated.

Extending the idea of using the exact solution for
one~-dimensional convective transport equation, one can
construct a better approximation function of boundary
conditions by utilizing the natural solution for
two-dimensional convective transport equation (III-34).

A natural solution for eq(III-3u4) may be written in x and
y variables as

_ 2(Ax+By)
¢ = Cye + Cl(Ay—Bx) +C, - ;—(—;%:—ET; (Ax+By)

(ITIT-42)
The last term in eq(III-42) is the particular solution of
eq(III-34). The first three terms are solutions that
satisfies the homogeneous part of eq(III-34). Writing

¢ =§- —F— (Ax+By) (ITI-43)

2(A"+B")
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and substituting ¢ in eq(IIT-43) into eq(III-34), then ¢

satisfies the homogeneous equation

~

O * ¢yy = 2A¢, + 2B¢,y (IIT-44)

The natural solution (IJI-u42) suggests that an
exponential and linear function in terms of the three
nodal values on each boundary may be employed to obtain
the approximated boundary conditions for the local
element considered. For example, the north boundary

condition where y is fixed can be approximated by

$N(x) : a, (?BX

N ~1) + bNx + Cy (1II-u45a)

where

‘NE * Pww - 2y

a =
usinh?;h

1 -~ < ~ ~ ~
bN = 53-[¢NE - ¢Nw - cothAh(¢NE + dnw - 2¢NC)]

The boundary conditions for south, east and west

sides, i.e., $S(X)’ &E(y) and $w(y) can be similarly

approximated by exponential and linear boundary functions

as follows
¢S(x) =

- 2B
Op(y) = ag(eYo1) bpy + cp (ITI-45¢)

2Ax
as(e -1) + bsx + CS (IITI-u45Sb)
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$w(y) = aw(eZBy-l) + byy + ¢ (III-45d)

W

where the coefficients ags bS etc. are expressed in terms
of the nodal values on each boundary in a way similar to
that for ays bN and Cy The nominally linear convective
transport equation (III-44) with boundary conditions
$E(y), $w(y), $N(x) and ¢o(x) is then solved analytically
by the method of separation of variables. The local
analytic solution when evaluated at the interior point P
of the rectangular local element gives a finite analytic

algebraic equation relating the interior nodal value @P

and its 8 neighboring nodal values as

% = Cpc®ec * Cwctwe * Cncnc * Cscsc * Cnelwe *
Cyulnw * Csebse * Coudsw (ITI-46)
Here, the FA coefficients are
- _=Ah _ _Ah
CEC = € (EB) ch = e (EB)
. =Bk . Bk
(IrT-u47)
. ,~Ah-Bk . _Ah-Rk
CNE =€ E CNW T e I
= o~ AD+Bk _ _Ah+Bk _.
CSE =€ E CSW : e E
where
- 1 ) ,
B = §ToshAh cosmak - Ah cothAn E, - Bk cothBk E,

(ITI-u48a)
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EA = 2Ah coshAh cothAh E? (IIT-u48b)

EB = 2Bk coshBk cothBk Eé (III-48c)

and
w —(-l)m(kmh)

- E, = I (ITI-u484)
- N | 2 2.2
- [ (Ah) +(Amh) 1° cosh /YA“+B +km k
n
| ® -(~1) (Aék)
‘ E = I (III-u48e)

L | 2 2.2 Y

[ (Bk) +(Aék) 1° cosh /YA“+B +A$ h
2
. 27 E2 ' Ak t%nth -Bh tanhAh (ITI-48F)
k 4YABk"® coshAh coshBk
with
_ 1 "o - 1
Amh = (m--2—)1r s Amk- (m—2)n

Details of the solution procedures are given in Sec.
B-1 of Appendix B. It should be noted that in the finite
analytic solution (II1T7-46), there is only one series
summation term needed to be calculated numericaliy. That
is Eys and it may be replaced by suitable approximation
functions to further reduce the computational time.

For the unsteady inhomogeneous convective transport

equation (ITII-34) with higher order correction term, i.e.,
g # 0, the local analytic solution can be obtained by
substituting ¢ of eq(ITI-43) at 9 nodal points into

eq(ITII-46) for ¢, which gives
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% = Cxe®ne * Cnw®Nw * Cse®se t Cswbsw * Crclec t
Cuc®wc * CucOuc * CscPsc - Cps (ITI-49)
where
Cp = ——5——— { Ah tanhAh + Bk tanhBk - 4 coshAh * o
2(a%+B?) §
coshBk [(Ah)2E2 + (Bk)zEé 1} (1II-50)

By substituting g of eq(III-34b) into eq{III-u9), a
10-point FA formula for unsteady two-dimensional convective

transport equation can be obtained

) 1
%p = — & Cypbye * Cywhnw * Cspbse * Cowlsw

l+'.l'_CP
R n-1
*Cec®ec * Cwebwe * Cnefne t Cscbsc t TCp %p
- Cpfp) (III-51)
where
-1
£.o0= 07 (x Vy¢.)
P ? j p
(III-51a)
= { F(x,y,t,¢.) + R [(u'¢)x +(v'e) 1}
J y P(0,0,0)

and the nodal values without superscript denote those

values evaluated at n'" time step,while ¢;’1 denotes the

known nodal value of interior point at (n-1)t" time step.
It is noted that the FA coefficients C

NE ? CNW etc.,
and the parameter Cp/h2 are functions of Ah, Bk and the

ratio h/k only. For local element of uniform grid sizes
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(h = h), they will depend on Ah and Bh only.

ESW TN TS
And the parameter Rh2/r, in this case, is often used to
determine the optimal time step T.

In the limiting case RhQ/T » 0, the steady state
solution (ITTI-48) is recovered. The same steady state
solution can also be obtained by equating ¢g = ¢g-1 in
eq(III-51).

The derivatives of ¢, i.e., . and °y’ may be obtained
analytically by differentiating the local analytic solution

directly [5,6]1, or by a simple formula described below.

Assume an analytic function along the x-axis

_ 2AX . .
¢(x,0) = ay(e 1) 4 byx + ¢y

which passing through 3 nodal points WC, P and EC in the

local element (see Fig. 4), so that

- 2
dec * duc T 9

usinh?Ah

40

b =

1
0 3R [bpc = Sy = COthARCdL. + ¢y = 24p)]

Co ¢p
then the derivative at any point along the x-axis can be

easily obtained

)
8, (%,0) = 2Aacs AX 4

C 0 (ITI-52)
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{ Evaluating eq(III-52) at x =0, then the derivative of

¢ with respect to x at nodal point P will be

_ %ec " %c |, Ah - sinhAh coshah
*%|, T T 7m

p 2h sinh?Ah

(¢pc *éyc - 2¢p)
(1II-52a)

- Derivative of ¢ with respect to y at point P can also
be derived in a similar way. It can be seen that eq(III-
52a) provides a gradual shift from central difference at
the pure diffusion case (Ah =0) to upward difference at
convection dominant cases (|Ah| >>1). Furthermore, the
derivatives at points WC, EC etc. can also be obtained
from eq(III-52) whenever needed.

III-2-3 Finite Analytic Formulation of Unsteady 2D

Convective Transport Equation for Nonuniform Grid

Spacing Local Element with Exponontial and Linear

Boundary Approximation

In previous formulation, the local analytic solution

for the nominally linear two-dimensional convective
transport equation (III-34) is derived in terms of the 8
boundary nodes which are equally spaced on the boundary
of the rectangular local element with grid spacing h and
k respectively. A finite analytic discretization equation
is then obtained by evaluating the local analytic solution

- at the center of the local element. The resulting FA

1

formulas (ITI-49) - (ITI-51) are applicable to fluid flow

LA
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or heat transfer problems with uniform rectangular or
square elements over the whole domain of calculation.
Although a freedom of employing different uniform grid
spacing in x and y direction is offered, it may still be
impractical for problems where extremely fine rrids are
needed in a small portion of domain of calculation only.
For this kind of problems, the use of nonuniform grid
spacing in a local element as that shown in Fig. 3 or
Fig. 4(b) is often desirable, since it enables us to
obtain physically meaningful solutions more effectively.
By using the same exponential and linear boundary
function (III-LS5a) - (ITI-45d), but expressed in terms of
the unequally spaced nodal values, a finite analytic
solution for nonuniform grid spacing local element may
also be obtained by the method of separation of variables
as that outlined in Sec. B-2 of Appendix B. However, the
derivations are much more complicated than those for
uniform rectangular local elements, and the computational
time required for numerical calculations of FA coefficients
will increase significantly. This additional complexity
may totally offset the advantages gained by using the
nonuniform grid local element. Thus, in present study,
instead of using this general formulation, a simple

interpolation formula utilizing the local analytic

solution (III-50) or (III-51) for uniform rectangular
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t element is employed to derive the finite analytic algebraic
equation for local element of nonuniform grid spacing.
Consider the case hE<hw and hN‘th shown in Fig. u(b)
a4s an example. A smaller rectangular element of width QhE,
height 2hN and with the interior point P located at the
center is drawn as shown. The FA formula (III-u49) derived
previously for ¢p can then be written in terms of nodal
*

* v
values ¢Nw’ ¢WC etc. on smaller rectar-<ular element as

follows

* * ]
*p = CNE®NE * Cyw®ww * Cspfsp * Coybsy * Cec%ec *

* *
“webuc * CncOne * Cgebsc - Cpg (ITI-53)

where the FA coefficiernts CNE’ CNw etc. are defined
previously in eq(III-%Y9) with grid sizes h=hE and k = hN'
If suitable interpolation functions are employed to
* -
¢SE etc. 1in
etc. at 9 nodes which

%
approximate the unknown nodal values ¢Nw’

terms of the known values ¢Nw’ ¢SE

are unequally spaced on the larger element, a FA formula
for nonuniform grid spacing local element can then be

obtained by substituting the interpolated nodal values
* *
*Nw® ®sE

Although there are several interpolation functions

etc. into eq(III-53).

% *
may be used to approximate the nodal values ONW‘ ¢WC etc.

the same exponential and linear boundary function (III-u5a)

- (III-45d) is employed as the interpolation function to
]
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obtain the unknown nodal values on smaller rectangular
element, so that the error introduced by interpolation
will be minimized. For example, the north boundary

condition can be approximated by the boundary function

¢N(x) = aN(eZAx-l) + byx + ¢y (III-54)
where
"wéNE * DEdaw - (hpthydéye
N T 2Ah_ -?Ah
hw(e -1) +hE(e -1)
-2Ahw 2AhE
. (e -1)(¢NE-¢NC) - (e —1)(¢Nw—¢NC)
N~ 2AhE -2Ahw
hw(e -1) + hE(e -1)
°N * O
in terms of the unequally spaced nodal values ¢NE’ ¢NC and

¢Nw on north boundary.

#
The interpolated nodal value ¢Nw can then be obtained
by simply evaluating the boundary function (III-54) at

x = -h.., which gives

* - -
bW (s-l)¢NE t Sopw ? (Q-S-S)¢VC (II1-55)
where 2Ahr -QAhE
h,. (e T+ e - 2) . h
S = L S = s E
ZAhE -7Ah ’ R
hy(e -1) + h.(e w_o1) W

T TR SRR ITNIRET THEGE TR T R TR
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Similar exponential and linear boundary functions can
*
sc?

pep and dgy as those shown in (B-33b) - (B-33e) of Appendix
% 13

B. By substituting interpolated nodal values &¢\u- buc etc.

*
also be employed to obtain other nodal values ¢WC’ [

jnto eq(III-53), a 9-point FA formula for local element

of nonuniform grid spacing is obtained.

1
¢p = 5 (bypdye * Pawnw * Pse®se * bewbsw * Peclrc *

+ - bp8) (III-56)

Pyuctwe byctne * Psc?sc

where

G =1 - (2-S-S)CWC - (2—t-t)CSC - (2-8—5)(2—t-t)Csw

byg = Cng * (s-1)Cyyy + (£-1)Cgp * (s-1)(t-1)Cqy

byw = Cnw * s(t-DCgqy

bgp * ECSE + f(s-l)cSw

bgy = Stlgy

bre = Cpe * (s=1)Ce + (2-t-P)Cp + (s-1)<2-t-'t')csw
byuc ° Ecwc + s(2-t-B)Cqy

byc * Cne * (t-1)Cq + (2-s-§)ch + (t-l)(2—s-§)Csw
bge = fCSC + E(Z-s-E)CSw

bp = Cp

and

PR G
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2Bh -2Bh
h.(e Nie N_2 h

= 7Bhy ' ~2Bhy ’
hs(e 1) + hN(e -1)

For the unsteady two-dimensional convective transport

equation with nonzero source function, a 10-point FA
formula similar to eq(III-51) can also be obtained for
the nonuniform grid spacing local element considered.

+ b + b

1
R (bypdye * Pawtnw * Pse®se * Pswlsw ¢

R n-1
brebpe * Puctuc * Pnelne * Psclsc t T Pp %p

- bpfp) (I1II-57)

Where the nodal values without superscript denote those

1

values evaluated at nth time step, while ¢;- denotes the

R time step.

nodal value of interior point P at (n—l)t
For the cases hE:>hw and/or hN >hS,.the finite
analytic algebraic equation (III-57) can still be applied

by simply reversing the flow direction and renaming the

nodal points. It can be carried out easily through the

change of signs and indices in numerical calculation.

Details are given in the subroutine COEFF2 of Appendix D.
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III-2-4 Finite Analytic Formulation of Unsteady
2D Convective Transport Equation for
Uniform Grid Spacing Local Element with
Piecewise-linear Boundary Approximation

Another possible boundary approximation which may give

all-positive FA coefficients is the piecewise-linear
boundary function mentioned in Section 111-2-2. Thus,

instead of using the exponential and linear boundary func-

tion (III-45a), one may approximate the boundary condition

on the north boundary by a piecewise-linear profile as

0<x<h

TIX

by (%) = ’

‘e = Byy = Sy

(ITI-58)
» =h<x<0

X

and $S(x), $E(y) and &w(y) can be similarly formulated.

The linearized homogeneous convective transport

equation (III-44) with Piecewise-linear boundary conditions

$N(x), $S(x), $E(y) and $w(y) is then solved by the method

of separation of variables. A finite analytic algebdbraic

equation can then be obtained by evaluating the 1local

analytic solution at the interior point P of the local

element. i.e.,

®s = CNE®NE * Oty CsE®sE * Couboy * CEctgc *

uctuc * Cncbye * Coodse (III-59)

where
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1 _-Bk -Ah,, -Ah-Bk .*
( CNE = 5 (e F2 +e FQ) + e [E -+(Ah)E2-+(Bk)B5]
_ 1, -Bk Ah_, Ah-Bk [ _* . '
CNw =5 (e Fp t e F2) + e (E -(Ah)EZ-F(Bk)Lél
_ 1 , Bk -Ah_, -Ah+Bk,  * .
CSB = 5 (e F, + e FQ) + e [E -+(Ah)E2-(Bk)Lé] |
]
.1, Bk Ah_, Ah+Bk  _* 3
CSW =5 (e P2 + e FQ) + e [E - (Ah)Ez—(Bk)Eé] ;
_ _-Ah : @
CEC = 2 (2Bk sinhBk Eé-Fé) é
_ _Ah . ' ' »
CWC = e ( 2Bk sinhBk EQ-FQ)
C... = e BX(2ah sinhaAh E, - F.)
NC 2 2
Bk .
CSC = e ( 2Ah sinhAh EQ-FQ)
and j
* 21 , _ 1 '
E =3 (El'+El) " 4coshAh coshBk
- (Ah)? - (Amh)2
Fp= 1 Y. 777
m=1 . [CAR)“+(A_h)“]° coshyp k
m m
. 1 2 .2
with Amh = (m—-2—)1r s By = YA“+B “‘mi
- (BK)Z = (1'Kk) 2
F! = I L
2 - bl N EY .
m=1 [(Bk)“+(A'k)"]1" coshy'h
m m
with A 'k = (m—}-)w ' o= /A§+B +A!
) m 2 > U m
AndIﬁ_,Ei, E, and E% are the same series summations as 3
1

those given in eq(III-48) and Sec. B-1.
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When unsteady two-dimensional convective transport
equation is considered, a 10-point FA formula exactly the
same as eq(III-51) and (III-51a) will be obtained except
that the FA coefficients in eq(III-47) are replaced by

those defined in eq(III-59),

II1-3 Finite Analytic Solutions for Unsteady
Three-Dimensional Convective Transport

Equations

The unsteady three-dimensional incompressible flow
problem in CartesianAcoordinate is governed by the equation
of continuity (III-1) and Navier-Stokes equations (III-2) -
(III-4) given previously. One may take the curl of the
Navier-Stokes equations to eliminate the pressure term, so

that three vorticity transport equations are obtained.

= L
S tub tvE twh, = gl t gyt §,2) tEu ¢t ug + Cu,
(III-60)

-1
Ny + unx + vny + wr]z = ﬁé-(nxx + nyy + nzz) + va + nvy + t;vz
(ITI-61)

= L
By T UL, +vcy-+wcz - Re(cxx'*cyy"czz) +£wx-+nwy-+cwz

(ITI-62)

where £, n and ¢ are the vorticity components given by

E = w. ~V, , n = u_,-w_ , g = vV -Uy (II1-63)
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E . By the use of equation of continuity (III-1),
ﬁi( eq(III-63) may also be written as

Uy + uyy tu, =0, - Cy (III-64)

Voex + vyy L S £, (II1-65)

L + wyy tw,, = gy - n, (I1I-66)

,é for velocity components u, v and w.

| Instead of solving u, v and w in eq(III-64) - (111-66),
another commonly used vorticity-based formulation did
introduce a scalar potential ¢, and a vector potential

i, SRS S S 8 k, such that

-

o

+w ko= Ve + Ux) (II1-67a)

vy = 0 (II1I-67b)

then eq(1II-64) - (III-66) may be replaced by

720 = 0 (II1-68)

viy, = - ¢ (II1-69)

vzwy = - (1II-70)
2 -

vy, = -2 (III-71)

Either in primitive variable (u,v,w,p) or in

vorticity-based (E4n,C,u,v,w Or E,n,C,¢,Wx,¢y,Wz)
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‘ formulations, a convective trar.sport equation of the form

of
¢xx'*¢yy'+¢zz = R(¢t-+u¢x-+v¢y-+w¢z) +F (II11-72)

is often encountered, where ¢ may represent any one of the

convective transport quantities, ¢j, such as velocities u, S

vV, w (R=Re), vorticities ¢, n, £ (R=Re), scalar potential o

¢ (R=0), components of vector potential Uy s wy’ v, (R=0)

Oor temperature (R = pe). The convective velocities u, Vy, W

and the source function F, in general, are functions of

independent variables x, ¥> 2, t and dependent variables 3

¢j including ¢ itself. By utilizing the equation of

continuity (III-1), eq(III-72) may also be written in

conservative form asg

bx t by, t6,, = R C o, +<u¢)x-+(v¢>y-+(w¢)zl +F
(I11-73)

Due to the coupling of variables, nonlinearity of

governin

g€ equation and/opr complex geometry and boundary
conditions, the analytic solution of eq(III-72) or (I11-73)
may be very difficult, if not impossible, to obtain. Thus, :

the FA numerical method is used to formulate the discreti-

zation equation for ¢, so that an approximate numerical

FYY

solution can be obtained.
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ITT-3-1 Method of Linearization

To implement the FA method, the flow region as shown
in Fig. 1 is subdivided into a number of small elements
with variable grid spacing hE’ hw, hN; hS’ hT and hB in x,
y and z direction respectively, so that the difficulties
of complex geometry and boundary conditions can be
approximately resolved. For coupled nonlinear convective
transport equations, a linearization scheme similar to
that described in Section III-2-1 for two-dimensional
case may be employéd to obtain a nominally linear
convective transport equation, so that the analytic
solution can be derived in each local element.

Consider the convective transport equation of
conservative form (III-73) as an example, even in a simple
rectangular local element shown in Fig. 1, the analytic
solution of eq(III-73) may still be difficult to obtain
due to the complex nonlinearity of the equation and also
the coupling of variables. In this situation, a
linearization scheme outlined in Sec. III-2-1 (u = U+u',
v=V+v', w=W+w') is employed to approximate the

convective transport equation as

dyx ¥ byy ¥ 85, = RCOL +UD, 4+ Vo, +16,) + £(x,y,2,t,05)

with (III-74)

f = F(x,y,z,t,¢j) +R [(u'¢)x-+(v'¢)y-+(w'¢)z]
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where U, V and W are representative constant values in the

local element, for example, the velocities at the interior

point P or the drea-averaged velocities over the local

element. And ¢j may be any dependent variable including ¢

itself. The source function f in eq(III-74) which includes

the original source term F(x,y,z,t ¢ ) of eq(III-73) and

the higher order correction term R [(u o) V! ¢) +(w' $), 1,

is approximated by a function known eitherp from previous

time step Tt 1 Or from previous iteration in iterative

steady-state formulation.

The linear convective trarnsport equation (III-74) may

be solved analytically in each local element as long as

the initial and boundary conditions are properly specified.

However, we would like to reduce the complexity encountered

in deriving the analytic solution for eq(III-74). IFf a

simple finite difference formula (III-33) is employed to
approximate the unsteady term and the nonhomogeneous term

(III-74a) is approximated by a representative constant

fo (=fn-l(x,y,z,¢j) » for example) in the local element,
=]

eq(III-73) is simplified to a linear elliptic PDE with

constant inhomogeneous term

¢xx + ¢yy + ¢ZZ = 2A¢x + 28¢y + 2C¢Z + g (I1I-75%5)
where

1 1 1
A=7RU,B=7RV andC=7RW
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T

n-1

g = ¢g - ¢p ) + fP = constant

And the constant A, B, C and g may differ from one element
to another, so that the overall nonlinearity is approxi-
mately preserved. Furthermore, the coupling nature of
variables which appears in convection coefficients A, B, C
and source term g may also be preserved by solving the
interlinked equations subsequently in. each time step.

For convenience, a change of variable can be made to

absorb the inhomogeneous term in eq(III-75)

¢ = ¢+ & (Ax+By+Cz) (ITI-76)

2(al+p%+c?)

so that ¢ satisfies the homogeneous convective transport

equation

- + 2B¢. + 2C¢ (I11I-77)

in the local element.

With the boundary conditions properly specified, the
homogeneous convective transport equation (III-77) can be
solved analytically by the method of separation of
variables to provide the local analytic solution for each
small local element. In what follows, eq(III-77) is first

solved for a rectangular local element of h.=h,=h, h

E 10)
hg =k and hp=hg =1 as shown in Fig. 6(a), and is then

N

extended to that for the nonuniform grid spacing local

element shown in Fig. 6(b).

Rl o R S

RS bl A R

A
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1I1-3-2 Finite Analytic Formulation of Unsteady
Three-Dimensional Convective Transport
Equation for Uniform Grid Spacing Local
Element
In the FA formulation of one- and two-dimensional
problems, several boundary approximations are investigated.
- Among them, the exponential and linear boundary function
is shown to be relatively simple and does give the correct
asymptotic behavior for both diffusion and convection
dominated cases. Thus, in the FA formulation of unsteady
three-dimensional problems, a generalized exponential and
linear boundary function will be employed to approximate
all of the six boundary conditions in terms of 26 boundary

~ nodes which are equally spaced on the local element shown

in Fig. 6(a). As an example, the boundary function on the
top surface can be written as

e2Ax-1)(eZBy—l) + a (eZAx—l)y +

op(x,y) = ag; *+ aq,( T3

2By 2Ax 2By
aTu(e -1)x + aTs(e -1) + aTG(e -1) +

apgX + apgy + apgXy (I11-78)

where the coefficients agy, aq, etc. are related to the
nine boundary nodes on the top boundary surface and are
given in eq(C-9) of Appendix C.

The boundary conditions for bottom, east, west, north

ILIRRAL R B B &

t
‘
!
4
+
Y




STy

ORIGINAL PAGE i3

OF POOR QuUALITY o3

and south sides, i.e., $B(x,y), $E(y,z), Ew(y,z), $N(x,z)
and Es(x,z) can be similarly approximated by exponential
and linear functions in terms of the nine nodal points
available on each boundary.

The linearized convective transport equation (III-77)
with boundary conditions §q(x,y), $B(x,y), $E(y,z),
$w(y,z), $N(x,z) and $S(x,z) can be solved analytically by
the method of separation of variables. A finite analytic
algebraic equation is then obtained by evaluating the
local analytic solution at the interior point P, which will

give a 27-point FA formula
(III-79)

where the subscript "nb" denotes the neighboring nodal
points to interior point P, and the FA coefficients Chb

are given in the following

g = e MIBECL 5o GAR-BX-Cl
Copp = e AIBRCL ARBK-CL
Gy = IOy g Ah-BK+CL |
Copg = e MMERICL e s GAN+BKACL 5
Cyer = 0 @), Cgep = eBR-Cl cony
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E { ~ ;
e CNCB = e-Bk+C1 (QA) ’ CSCB = eB”\+Cl (QA) N é

Ceer © e~AR-C1 QB) , Cucr = eAh-Cl (QB) ,

Cpop = € M By Cucp = € C @By

Cyee = e B oy Cywe = € PK oy

Cope = e o), cgue = AMBR (o)

Cee = e (ra) , Cye = e (ra) ;

Cye = e °F (RB) , Coe = e°F (RB) ,

Cre = e 1 (RO , Cpe = et (RO \

where

1
8coshAh coshBK coshCl ~ [A-FB-FC+GA+GB+GC

QA = 2coshAh (FA - GB - GC)
QB = 2coshBk (FB - GA - GC)
QC = 2coshCl (FC - GA - GB)
RA = ucoshBk coshCl (GA)
RB = 4coshAh coshCl (GB)
RC = bcoshAh coshBk (GC)

and FA, FB, FC, GA, GB and GC are defined by

FA = 2Ah cothAh (EA)
FB = 2Bk cothBk (EB)
FC = 2C1 cothCl (EC)
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EA
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EB

EC

and
GA
GB

GC

where E*.
1]

; form of
3
- x
3 Eij
E
£Y.
ij
<

POOR quaLITY

y Z

E1, Y By

x z h,? 1

Ey) *+ Eyp = ()7 (BA) * T5oooRAR GoshBK coshel |
tanhBk _ (}1)2 tanhAh j

Bk k Ah
X y _ h,? 1
Ej, + E5) = () (BEA) + J5o55RAR CoshBK coshel

tanhCl _ (}1)2 tanhAh ]
C1 1 Ah

4BkC1 cothBk cothCl E§2
4AhC1 cothAh cothCl Egz

4AhBk cothAh cothBk 232

. EY. and Eij are doible series summations of the

1]

© -1 K6 1)
= I L 7 T
q=1 r=1 2[(BK)“+(p X1 [(C1Y“+(8 1) 1 coshy__h
q r qr
®» (-DPT( s D
=z , T .
- - ? 2.1 2 253 y
p=1 r=1 20(c)Y+(s 1)1 [ (AR) " +(Xx_h) "1 coshy K
r P pl‘
© C-DPY n)(u k)
= 3 ) v D q

71 7 773
1 gq=1 2[(Ah) h) Bk) "+ k) 1
q (A +<xp 170« (pq ] coshypq

.
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Aph=(p—7)1r, buk=(g-3)m , Glz(r-g)n
Y. = /A2+BQ+67+A2+62
pr p T
_ 2. .2 2. 2. .2
qu" /A +B"+C +uq+6r
vy = /A%+B%+cier ey’
Pq P q

Details of the derivations are given in Sec. C-1 of
Appendix C. Numerical results of FA coefficients for some
typical cases will be given in Chapter IV.

The local analytic ¢p of unsteady nonhomogeneous
convective transport equation (III-75) can be obtained by

substituting eq(III-76) into eq(III-79) at 27 nodal points

26
6y = 6 = L C_, [ 9 4+ £ (Ax_, +By , +Cz_.)]
P P 1 nb nb 2(A?+82+C2) nb nb nb

(II1-80)

where (xnb’ Yah? an) is the position of each neighboring
nodal point at Cartesian coordinate, and g may including
the unsteady term, source function and the higher order
correction term used to compensate the assumption of
constant convective velocities for local element.

By substituting g of eq(III-7%b) into eq(III-80), a
28~point FA formula of unsteady three-dimensional

convective transport equation can be obtained for the

local element of uniform grid spacing as follows

Lo Sl
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1 26 R n-1
bp = — g ( I Cpb .+ ZCpép  =Cpfp) (III-81)
1+3¢ 1
T P
where
26 (Ax_, +By ., +Cz_,) C
Cp = - 2 L (II1I-82a)
1 2(A° + B® + C%)
= ——————— {Ah tanhAh + Bk tanh3k + Cl tanhCl -
2(A“+B+C7)

16coshAh coshBk coshCl [(Ah)Q(EA) + (Bk)z(EB) +
(Cl)Q(EC)} (ITI-82b)

f. = {F(x,y,z,t,¢j)-+R[(u'¢)x+(v'¢)y+(w'¢)zl} .

and the nodal values without superscript denote those

th

values evaluated at n time step, while ¢;—1 and f_ are

P
nodal value and source function (including the higher
order correction term) of interior point P evaluated at
(n--l)th time step.

In the limiting case Rh2/1-+0, the steady-state
solution, i.e., eq(III-80) with g=fP will be recovered
It can also be written as

28
¢P = i Cnb¢nb - CPfP (IT11-83)

The same steady-state solution can also be obtained

by equating ¢;'1 = ¢g in eq(III-81).
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ITI-3-3 Finite Analytic Formulation of Unsteady
Three-Dimensional Convectiye Transport
Equation for Nonuniform Grid Spacing
Local Element :

In many engineering applications, the use of nonuni-
form grid spacing local element is often desirable because
inevitablly fine grids or nonuniform grid spacing are
needed in some region of the domain of calculation to
capture the physical phenomenon or to save computational
time. Thus, a local analytic solution for the local element

of nonuniform grid spacing hE’ hw, hN’ hS' hT and h_, as

B
shown in Fig. 1 is derived in this section, so that one
may obtain physically meaningful solutions with minimum
computation.

Consider the case hE <hw, hN <hS and hT <hB shown in
Fig. 6(b) as an example. Following the idea described in
Section III-2-3, one may apply the FA formula (III-81) to

a smaller uniform grid spacing rectangular element of

width 2hE, depth 2hN and height 2hT as shown in Fig. g(b)

as follows

o 1 ( 225 * R, .n-l £ )
R ST 1 Cnb®ap * TCp%p T - Cpfp
TP

(IT1I-84)

#
where the unknown nodal values ¢nb on the boundaries of

the smaller rectangular element may be approximated by
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simple interpolation formula in terms of the known nodal

values ¢pp ©On the larger nonuniform grid spacing local

element. In this formulation, the same exponential and

linear interpolation function given in previous section

IIT-2-3 will be employed to obtain the interpolated nodal

%
values ¢,p> SO that the error introduced by interpolation

will be minimized. For example,
*

éNywT ™ay be approximated by exponential and linear

the unknown nodal value

boundary function in terms of ¢NWT’ ¢NCT and ¢NET on the

boundary of larger nonuniform grid local element.

* bad -
Nur T (S=Dgypr ¢ Seyyr + (2-5-8) ¢y (I11-85)
where
2Ah -2Ah
hw(e E e E._z) ) hE
s = i 7R RS (III-85a)
hy, (e -1) + hp(e -1)

Similar exponential and linear interpolation formulas

can also be employed to obtain Oother interpolated nodal

values as those shown in eq(C-35) of Appendix C, while
*

¢nb: ¢nb at nodal points NET, NEC, ECT, EC NCT, NC and

~

TC are encountered. By substituting these interpolated

nodal values into eq(III-84), a4 28-point FA formula for

unsteady three-dimensional convective transport equation

can be obtained in the local element of nonuniform grid

spacing h h

r» hys hN’ hS’ hT and hB as follows

kA

I PR - e




TR

1 26 R n-1
¢p = TR ( I bpép ¥ TPpop - bpfp) (III-86)
G+ by 1
G =1 - (2-5-8)Cyp - (2-t-¥)Cgq, - (z-r-f)cBC - (2-8-
§)(2-t-f)Cswc - (Z”S‘g)(Q"r';)CWCB - (2-t=-8)(2-r-
F)CSCB - (2—s~§)(2~t-f)(2—r—§)CSWB
bypp © Cnypr * (87D Cyyp *+(t-DCgpp + (r-D)Cypp *
(s—l)(t-l)CSWT + (t—l)(r-l)CSEB + (s-1)(r-1)*
Chup ¥ (s-l)(t-l)(r—l)CSWB
brer © Cper * (s-1)Cynp * (2-t-'t')cSET + (r-1)Cpep *
(s-1)(r-1)Cpog *+ (2-t=D)(p=1)Cgpy + (s-1)(2-t- ’
E)CSWT + (s-l)(?—t-f)(r—l)CSWB
byer = Cner * (2-s-'s')cNWT + (t-1)Cqpp * (r-1)Cyep *
(2-5-8)(t=-1)Cqup * (2-5-8)(r-1)Cyyup * (t-D)(r
-DCepp * (2-5-8) (£-1)(r=1)Cqyn
bype = Onec (s-1)Cpppe * (t-DCgpc * (2-r-v)Cypp +
(5-1)(t-1)Cgyq * (s-1)(2-r=F)Cyup *+ (t-1)(2-r éw
—?)CSEB + (s—l)(t—l)(?-r—E)CSWB
bre Cro * (s-1)Cpp + (2-t-f)cSEC + (2—r-f~)CECB +

70
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(s—l)(?-t-f)csw

c + <s-1)(2-r-f~)cWCB + (2-t=-E)*




NC

NWT

NWC

WC

SET

SEC

WCT ~
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(Q—P-P)CSEB + (s-l)(?-—t-t)(?-r-r)cswB

C + (t—l)CS

NC + (2-s-s)CN

+ (2-r-r)CN +

C WwC CB

(2—s—s)(_t-1)C8wC + (‘c—-l)(?—r‘-r')(ls(,B + (2-5-38)(2-

- -, -
r—r)CNWB + (2-s-s)\t—l)(2—r-r)CSWB

Cin

a0 + (r--l)CBC + (Z—S—S)CwCT + (2~t-t)CSCT +

(2-s—s)(r‘—l)CWCB + (2-t-t)(r-l)CSCB + (2-5=-5)(2~

t-E)Cqpp ¥ (2-5=-5) (2-t-T) (r=1)Cqyyp

-élchWT + (t-l)CSWT + (r-DCyyp ¥ (t-D)(r-1)%
Csup

=8l Cyye ¥ (=D Cgpe * (Q_P';)CNWB + (t-1)(2-r-1)
Csus?
sl Cyer * (2-t-E)Cqyp *+ (r-1ICyep + (2-t=t)(r-1)
Cswa?

= g Cuc * (2-t-E)cSWC + (2-r-v)Copg * (2-t-t)(2-
P_;)CSWB]

=t [CSET + (s-l)CSWT + (r-l)CSEB + (s-1)(r-1)%
Cswp?

=Tl Cqpe * (s=-1)Cqyc * (Q-r-E)CSEB + (s=1)(2-r-1)
Coprn )

oWB
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+ (2-g~s8)(r

+ (?-s—s)CS + (r-l)CS

SCT WT CB
~1)Cqyp?
ElCg, + (2-5-8)Cgyn + (2-r-T)Cgnp + (2-5=8)(
2-r—F)CSWB]
rl Cypg * (s=1)Cyyp * (£-1)Cqpp *+ (s-1)(t-1)%
Cswa?
r [cECB + (s-1)Chpp * (2-t-%‘)cSEB + (s=-1)(2-t-
) Cqyp !
r [ Cyep * (2-5-8)Cyup + (t-1)Cqpnp + (2-5-8)(t
-1)Cqyp]
rl Cpe * (2-s-§)cWCB + (2-t-E)CSCB + (2-s-8)(2-
t-E)CSWB]

tr [CSEB + (s-l)CSWB]

tr [ CSCB + (2-s—s)CSWB]

]

“+

ST [CNWB (t-l)CSWB

O]
3
~
(@]
+

(2-t—f)CSWB]

0
-
—
(@]
+

SWT (r-l)CSWBJ

stlc +\(2-P-F)CSWB]

R T R P o

B P LT T T P YT




e ey U m’\‘v\;'m‘!

L

Ly

:
!
T

ORIGINAL punT 13

Ty
OFf POOR QUA 73

where s and 5 are defined in eq(III-8%a), and t, t, r and

P are similarly defined as

2Bh ~2Bh

h.(e Nie N2 h
t = - —v t =t N
7Bhy -QBhS ’ Hg
h.(e -1) + h. (e. -1)
S N
2Ch ~-2Ch
hB(e T~+e T-—?) _ hT
ro= 7Chy 7Chy > T TRy
hB(e -1) + hT(e -1

The coefficients C , are given in'eq(III—79) with

h=hg, kzth and 1 =hT. For the cases hE:>hw, hN>hS etc.,
the FA solution (III-86) can still be used by opposite
the flow directions and rename the indices of neighboring

nodal points. Details are given in the subroutine CCEFF3

of Appendix D.

RRE— P
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CHAPTER IV

RESULTS AND DISCUSSION OF
FINITE ANALYTIC COEFFICIENTS

o AUGHUIBRE LI SO L LU MIBLLARREIR L R LA |

E In Chapter III, several kinds of discretization alge-
braic equations for multidimensional convective transport
equations were derived with different initial and boundary
approximation functions in each local element considered.
In general, these finite analytic solutions are functions
of convective velocities (or convection coefficients A =
RU/2, B=RV/2 etc.), grid sizes and time increment. In
order to illustrate the functional behavior of these
analytic solutions, examples of FA coefficients are given
in this chapter. A comparison with the 9-point FA formula
derived previously by Chen et. al. L5,6] is made for the
case of steady two-dimensional convective transport

equation.

IV-1 Finite Analytic Coefficients for
Unsteady One-Dimensional Convective
Transport Fquation

In Section III-1, three sets of FA coefficients for

FA solution of eq(III-7) were derived as shown in (III-13),

(III-15) and (III-20) for two-time and one-time step local
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elements respectively. For the two-time step local element
considered, second-order polynomials were employed to
approximate the initial and boundary conditions. The
resulting 8-point FA formula (III-13) then relates the
nodal value ¢NC to its 7 neighboring nodal values with two
parameters Ah and Bh2/21 (or Ah and Courant number C, =
2A1/Bh). The 7 FA coefficients are tabulated in Table (1)
and (2) for a range of Ah and Courant number, CO, of 1.
Physically, the dependent variable ¢ may be considered as
a temperature variable carried by fluid moving at a
constant velocity U or a cell Reynolds number of 2Ah in an
element. A Courant number of 1 means that a fluid particle
will travel a distance of h from WC to NC in a time
interval 1. However, the temperature of the particle may
not remain the same in this transport process, since , in
additional to convection, the fluid particle also diffuses
its energy to the surrounding fluid particles. For
convection dominant cases (i.e., |Ah| >>1), the diffusion
effect is so small that the temperature field is practi-
cally frozen with fluid flowing at the velocity of U in a
time interval of 1. The influence of strong convective
motion on the dependent variable ¢ can be seen easily from
Table (1) that ch-vl for Ah 2103. That is the upstream
value of ¢WC without diffusion is carried to the node NC

or ¢NC::¢NC' On the other hand, if the diffusive transport

L‘B\
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L
process is much stronger than the convective heat transport
carried by fluid velocity (i.e., Ah~-»0), the influence
from upstream and downstream should be nearly the same,
since the diffusive transport is driven by the temperature
difference and not by the convective velocity U. Again,

this can be seen from Table (1) that C =C = 0.5 as

NW NE
Ah >0, or ¢y =0.5(¢NE-+¢NW).

In Table (2), the influence of convective velocity is
studied for the case of BhQ/?T =1 by varying the Ah value.
Physically, this is the case with given time increment T
and grid cspacing h, and the parameter Ah is proportional
to convective velocity U. Thus, a large value of Ah may be
interpreted as a large velocity. It can be seen from
Table (2) that the FA coefficients gradually shift upward
when the convective transport becomes dominant. However,
the negative FA coefficients although small are
encountered, these negative FA soefficients may translate
into locally unrealistic numerical result of overshoot
as shown in Sec. III-2. Instead of second-order polynomials,
an exponential and linear approximation for initial
function is employed to derive a 6-point FA formula
(IITI-15) or ( II-16) in a one-time step local element.
This results in all-positive FA coefficients as shown in

Table (3) and (4) because the exponential and linear

approximation does not overshoot the three nodal values
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used for the initial condition. On the other hand, the
results in Table (3) still properly exhibit an upward
shift of the influence of FA coefficients on ¢p value.
In Table (4), the influence of Courant number C0 is
investigated for a convective dominated case of Ah = 50.
The FA coefficients indicate that when diffusion effect
is small, the nodal value at point P is largely determined
by the information from upstream boundary. Since linear
boundary approximation is used along the west boundary,
should be linear also when

| the weight of C, . and C.

wC W
CO > 1, because characteristic line issued from the node

P intercept the west boundary. On the other hand, if
0<Cysl, the characteristic line now intercept with the
initial line, and the rnodal value ¢P is determined by the
exponential and linear initial approximation function
along the south side.

In order to reduce the effort of manipulation and
computational time, an alternative, hybrid FA solution
(IT1-20) for eq(III-7) is derived in Section III-1-3,
in which the time derivative is approximated by finite
difference. The values of FA coefficients thus obtained
are tabulated in Table (5) for compariscn. For large or

small Courant number CO, there is little difference

between the hybrid approach und jpeneral U'A formulation

(I11-15) in the one-time step local element considered.




ORIGINAL PAGE 19 18
OF POOR QUALITY

However, the diuncrepancy between A coefficients for

eq(I11=158) and (I11=20) becomes sipnificant when the

Courant numbevr is of the order of 1. Thius is because when

the Courant number is near one, the nodal value at point

P oin mainly determined by dgps yet the hybrid FA solut ion

does net take the nodal value oﬂw into account . As 4

conseguence, 4 humerical dittusion is then introduced in

the hybrid trormulation when the nodal value ¢%w 18

approximated by the neighboring nodal values QWK" and @S(

from this astudy, one may conclude  that | when the

game boundary functions ave uned, the FA tormulation using

the exponential and linear initial tunction always pives

the physically realintic results and vequirves lens

computational time. On the other hand, it the same initial

tunction in emploved, the use ot two=-time step clement

and higher ovder boundary tunctions reduces the false

numerical Jdittusion | but the ettfort of manipulation and

computational time inerease  signiticantlv.

Un'J'\‘d) fwo-<_;monn\cn\|l tnn\wn (1vv
Txun\.Lm t Fquati fon

V-, tinite Anulx io &ov!txxnxntb tor

In  Section 111-2, the a-point A tormula Jevived by

Chen et. al. (v, 61 for :teady two=dimensional homogoneous

vortivity transport equation was tivst improved by using

exponential and linecar boundary approximation instead of

P

o e A 3

e —— e

k!
.j
i
!
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the second-order polynomial originally proposed. A 10-point
FA formula (III-57) for unsteady two-dimensional convective
transport equation in a nonuniform grid spacing local
element is then derived while the best available boundary
approximation is employed. The FA coefficients thus derived
for nonuniform grid spacing element are, in general,

W’ hN’ hS and v. If a local

element of uniform grid spacing, hF. = hw : hN = hS = h, 1is

functions of A, R, R, hE’ h

considered, the I'A coefficients become functions of Ah,
Bh and Rh2/1 only. In this section, the effect of three
different boundary approximations, namely, second-order
polynomial (FASP), exponential and linear (TAEL) and
piecewise-linear (FAPL) boundary approximations, on FA
coefficients is investigated at first for the steady
two-dimensional convective transport equation (III-35)

on a local element of uniform grid spacing. Several
examples are then given to show the functional dependence
of FA coefficients on convective velocities (or A and B),
grid sizes h and k , and also the time increment Tt.

After that, a brief comparison with some 9-point formulas
derived from finite difference or finite element formu-

lations will be made. Thereafter, the I'A formula is

employed to solve some practical test problems.
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(A) Comparison of FA coefticients for Laplace Equation
(A=B=0, hp=h,= hy = hg = h)
Table (6) shows a comparison of FA coefficients for
FASP, FAEL and FAPL formulations when Ah =Bh =0 is consi-
dered for an element of equal grid spacing. One observes
that the FAEL and FASP formulations give the same values
since the second-order polynomial boundary profile is
recovered in FAEL formulation when A and B approach zero.
The resulting FA coefficients are close to the fourth-order
accurate Greenspan formula [171. (i.e., Cpp = = Cyp =

EC ~ "WC NC
C. .. =0.2, Corw=Cu,=Coap=Cay* 0.05). On the other hand,

scC > “NE NW SE SW

the FAPL formulation apparently overestimates the

diffusion influence at four corner points due to the less

accurate piecewise-linear boundary approximation used.

(B) Comparison of FA coefficients for steady 2D convective
transport equation (hE=hw =hN:=hS = h)

In Table (7), (8) and (9), three different convection
dominated cases of (i) Ah=Bh= 5, (ii) Ah =50, Bh=0 and
(iii) Ah = 50, Bh =25 are considered in a local element of
equal grid spacing. It can be seen that all three FA
formulations exhibit a gradual upwind shift when the
convective velocities becomes large. The FAEL and FAPL

formulations give all-positive FA coefficients for all

range of convective velocities , while negative FA

coefficients are encountered in FASP formulation if




ORIGINAL PAGE (8 o1
OF POOR QUALITY

either Ah or Bh becomes large. These negative FA coeffi-
cients although small are physically unrealistic [11].

On the other hand, the FAPL formulation still overestimates
the diffusion effect at the corner points NW and SW in

Case (ii). As mentioned earlier, this false numeraical

diffusion is caused by the less accurate piecewise-linear
boundary approximation although the physical diffusion 3
should be much smaller. From the comparisons made above,
one may conclude that the finite analytic solution
derived from the exponential and linear boundary
approximation is the most accurate one among the three

FA solutions considerecd. Furthermore, FAEL formulation
needs only one series summation term in the numerical
calculation of FA coefficients (see Appendix B), while
three summation terms are needed in FASP and FAPL
formulations. When unsteady three-dimensional convective
transport equation is considered (see Appendix C), the
manipulation effort and computational time for FAEL
Formulation can thus be substantially reduced. This
additional advantage makes the FAEL formulation parctical
and attractive in solving unsteady three-dimensional
convective transport equations which is presented in
Section III-3. It is concluded that FAEL formulation is

the most accurate and most economic FA formulation among

T ooy

the three boundary approximations considered.
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Since the FAEL formulation gives the most accurate
result tor both diffusion and convection dominant cases,
and requires least computational time among the three
FA formulations, in what tollows, only the FA coefficients
obtained from FAEL formulation will be considered for
unsteady two-dimensional convective transport equations
in unequal grid spacing local elements.

In Table (10), the FA coefficients for laplace

equation are calculated in a local element of hF: hw= h
and hy =h, =k for different aspect ratio h/k. It can be

seen that when h/k becomes larger and larger, the influence
from two nearest nodal points NC and SC becomes more and
more significant, and a correct asymptotic behavior is
obtained when h/k » w,

Table (11) shows the TFA coefficients for steady 2D
convective transport equation of A=8=z20 in a local
element of k =0.1 and Jifferent aspect ratio of h/k =1, 2,
5 and 10. The results indicate that when the aspect ratio
is increased, the influence ftrom SW decreases while the
intluence from the nearest upstrceam nodal point SC
gradually increases. Tt should be remarked that the FA
coetficients remain positive tor all range of the
convective velocities considered, u physiically realistic
solution is thus insured even if unequal grid spacing

local element is considered. Such a positiveness of
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coefticients must be yguaranteed for any numerical method,
FA, FD or FA, if & physically realistic solution is
expected.
When unsteady two-dimensional convective transport
equation (III-32) is considered, a 10-point FA formula
(ITI-51) which contains the information from interior

point P at previous time step is obtained. If small time

n=1
P

revious time step would be dominant as those shown in
P i

increment i:n considered, the influence of ¢ from

n=-1
P

becomes vanishingly small when the time increment becomes

Table (12). On the other hand, the influence of ¢

Y
large (i.e., Rh“/1+0). In fact, the influence from
interior point I at previous time step may be written

explicitly from eq(lII-51) as

while the FA coeftficients at the present time step are

reduced at the same rate of 1/(1 ¢ $(ﬁ>)- Thus, the

unsteady eftect is equivalent to an under-relaxation
factor of the magnitude of 1/(1 0?(&,) when the iterative
procedure  adopted to obtain a steady-state solution.

h h,, and h

£ W' N S®
under-relaxation factor may vary from one element to

Since CP is . function ot A, B, h the

another. It is thus expected that the solution obtained
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by marching in time will perform better than that obtained
by the steady-state iterative method.

Before applying the finite analytic algebfaic equation
(IT1-51) to solve any practical engineering problems, it
is helpful to compare the FA coefficients with some of the
9-point formulas derived from finite difference or finite
element formulations in obtaining algebraic representation
of partial differential equations.

In most of the finite difference formulations, the
convective term in convective transport equation is often
approximated by central difference, upward difference or
expon~ntial schemes to obtain a S5-point discretization
equation (i.e., interior node P and four neighboring nodes
EC, WC, NC and SC) for steady two-dimensional convective
transport equation (IIT-35). Raithby [12,18] investigated
these commonly used finite difference formulas and
concluded that more neighboring nodal points should be
considered if the false numerical diffusion is to be
reduced. A skew upstream ditference scheme (SUDS) and a
skew upstream weighted difference scheme (SUWDS) are then
proposed [12] to brought in the corner points in the
control volume formulation of convective transport equation.
In the SUDS formulation, simple extrapolation formulas
were used to evaluate the convective and diffusive fluxes

through the control surtaces in terms ot the two upstream
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nodal points. However, the resulting 9-point formula does
have some negative coefficients as long as nonzero convec-
tive velocities are considered. In the SUWDS formulation,
an exponential and linear profile in terms of two upstream
and one downstream nodal points is employed to estimate the
ccnvective and diffusive fluxes through the control
surfaces, so that a 6-point formula including only one
upstream corner point is resulfed. The 6-point formula thus
obtained is rather complicated and is not free from
overshooting when applied to a simple step flow problem
where the main stream coming from a skew direction. This
physically unrealistic overshoot indicates that some of the
~~efficients are still negative. Recently, Stubley et al.

2¢] independently proposed a method similar to the FA
.ethod developed by Chen et al. [5,6] to obtain the
discretization equation for the steady 2D convective trans-
port equation. Instead of using the method of separation
of variables, the method of Green's function is used to
obtain the analytic solution by employing either second
order polynomial or piecewise-linear boundary approxima-
tions. The result for second-order polynomial boundary
approximation is exactly the same as FASP formulation
described before, and the solution using piecewise-linear
boundary approximation is also given in FAPL formulation of

the present study by the method of separation of variables.
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Shay [13] developed a finite difference method to
approximate the convective term in vorticity transport
equation in terms of the 9 nodal points in a square local
element, where the 9 coefficients are chosen based on a
Taylor-series expansion. With the diffusion term
approximated by the usual central difference formulation,
a 9-point finite difference discretization equation for
steady two-dimensional vorticity transport equation is
obtained. The resulting 9-point FD formula gives equal
weight for four center nodes, i.e., EC, WC, NC and SC,
for all range of convective velocities while the FD
coefficients at four corner points NE, NW, SE and SW are
always negative. Since no upward shift on four center
points is exhibited and physically unrealistic negative
coefficients are always encountered at corner points
when convective velocities are not zero, it is expected
that the solution obtained by this FA formulation will
become increasing unreasonable when convective term
becomes large. In fact, physically unrealistic two major
eddies flow pattern were encountered even when a fine
mesh of 0.0125 was used to solve a driven cavity flow
problem at Reynclds numbers of 2000 and 5000,

In finite element formulation, an "upwind scheme"
similar to those used in finite difference formulation

was derived in [14,15] by improving the weighting function
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of standard Galerkin formulation with modifying functions
and a set of optimal parameters. The exact solution for
one-dimensional case is recovered in this formulation
when the optimal parameter is used. The same optimal
parameter 1s then employed to derive a 9-point formula
for two-dimensional convective transport equation. The
9-point FE formula thus obtained provides a gradual shift
to upwind when convective terms are significant. However,
large negative coefficients are often encountered in
convective dominated cases. Furthermore, when pure
diffusion case (A=B =0) is considered, equal weight of
1/8 are resulted for all of the eight neighboring nodal
points. Thus, physically unrealistic solutions may be
resulted when applying this FE formula to multidimensional
fluid flow and heat transfer problems.

All of the comparison made above are based on a
square local element of equal grid spacing hE: hw=:hN= hS
= h. When unequal grid spacing are considered, the results
obtained by finite difference and finite element formu-
lations may become even more unreasonable, while the FAEL
formulation still gives all-positive coefficients and
correct upward shift although some numerical diffusion are
encountered due to the use of interpolations. Thus, it is
concluded that the FAEL formulation is by far the most
accurate 9-point tormula with a reasonable computational

expense.
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IV-3 Finite Analytic Coefficients for
Unsteady Three-Dimersional Convective
Transport Equation

In Section III-3, the most accurate and economic
exponential and iinear boundary profile is employed to
derive the unsteady three-dimensional convective transport
equation (ITI-75) in both equal and unequal grid spacing
local elements. The FA coefficients ([1I-79) for some
typical cases are shown numerically in t he following to
illustrate the relative importance of each coefficient, so
that the physical significance of the upward shift can be
more easily understood.

In order to examine the effect of convective velo-
cities on the TA coefficients, several different convective
velocities come from different directions are considered
in Table (13) thru (15) for an equal grid spacing local

element of hE=hw :hN =hS = h :hB =h. For the case A= B =

T
C =0, the convective transport equation (III-75) reduces
to the simple Laplace equation. In this case, the FA
coefficients are symmetric to the interior point P, and
the influence from eight corner points are quite small,
while the influence from the center of each boundary
surface is much more signiticant because they are much

closer to the interior point P. When the convective

velocity is gradually increases along the z-direction, the
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influence from upstream nodal points becomes more and more
profound as shown in Table (13). For example, the FA

coetficient C for the upstream node increases gradually

RC
trom 0.113631 at Ch=0 to 0.980101 at Ch = 100, while those
nodal values at downstream Jdecrease gradually to zero.

In Table (14), a resultant convective velocity comes
from SCB (fouth, Center, Bottom) odge is considered, the
influence trom the upstream nodal point 3CR gradually
increases from 0.023943 a4t Bh = Ch =0 to 0,824620 at Bh =
Ch =580, Tt can be seen that when the convective velocitiesy
become larye, the interior nodal value o is mainly
determined by the three upstream nodal points SCR, BC and
SC. [f the resultant velocity is come trom one of the
corner point SWR as those shown in Table (19), then the
influence from the four upstream nodal points SWR, SCR,
WCB and SWC will increase when convective velocities
become large. On the other hand, the A coefficients for
downstream nodal points become neglipgibly small when large
convect ive velocities are encountered,

It can bhe seen trom Table (18) and (1%) thdat when the
resultant velocity is not aligned with the prid lines, the
7T-point tormulas (i.e., BC, WC, NC, 8¢, TC, BC and the
interior point P) which are adopted in many tinite
ditference methods may suffer trom false numerical diffu-

sion, because the information contained at upstream
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‘ corner points is not accounted for. On the other hand,
the 27-point FA tormula can take care of the convective
velocity from any skew direction, thus, much accurate

- solutions should be obtained when the 27-point FA formula
i{s used to solve any fully elliptic fluid flow and heat
transfer problems.

When unsteady three-dimensional convective transport
equation (TI1-74) is considered, the influence from nodal

n-1 . . . .
value @P at previous time step can be written trom

eq(11I-81) as

Cp ;

14+ R8¢
-

~

\J -
Cp =

P

while the TA coefficients at the present time step are

reduced at the same rate of l/(14-§CP). Since Cp is a

this

function of A, B, C, h h h h., h, and h

E> W’ N> 'S T B

equivalent under-relaxation factor may vary from one

Sl

element to another. It is therefore expected that stable
steady-state solution may be easily obtained when the
unsteady approach instead of the steady-state iterative

method is used.

e
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CHAPTER V

METHODS OF NUMERICAL CALCULATIONS

In Chapter III, the finite analytic solutions for
unsteady multi-dimensional convective transport equations
were obtained. These FA formulas can be employed directly
to solve the general convective transport equations for ¢
(e.g., temperature, vorticities, concentration etc.) in the
presence of a given flow field. However, except in some
extremely simple circumstances, it is not possible to
specify the flow field or to solve it analytically. In
general, one must calculate the velocity field numerically
from appropriate governing equations. For incompressible
fluid flows, the velocity components are governed by the
equation of continuity and Navier-5tokes equations as
equations (III-1) thru (III-4) shown in Chapter III.
Although Navier-Stokes equations are complicated due to
the nonlinearity and coupling of variables, they are just
special cases of general convective transport equation
(III-72) to describe the transport processes of momentum.
As mentioned before, the problem of the nonlinearity can
be resolved by employing a local linearization scheme in

marching or iterative processes. And the difficulty of the




ORIGINAL PAGE iy
OF POOR QUALITY

coupling in several variables may also be handled by
solving sequently the system of algebraic equations for
each variable one at a time. In primitive variables (u,v,
w,p) formulation, the finite analytic numerical solution
of the velocity tield can be obtained from three momentum
equations when tne pressure field ju made to satisfy the
equation ot continuity., However, the bressure-velocity
coupling via equation of continuity happens to bhe a
particular troublesome source in 50lving incompressible
fluid flow problems for many vears (see Patankar 111)] and
Raithby an! Uchneider [201). For compressible flow problems,
one may extract pressure from density via equation of
state by considering the density as the dependent variable
of equation of continuity. [20]. Rut such a compressible
flow formulation is lnappropriate to constant density or
incompressible fluid flows. l'or incompressible fluid
flows, the equation of continuity is reduced to a
constraint of velocity field to be satistied indirectly
through the correct chojce of pressure. This indirect
specification of pressurc field, however, is not very
useful unless a direct method is employed to solve the
whole set of discretization equations for momentum and
continuity equations simultaneously. In order to avoid
large storage and time expense associated with direct

methods, several other formulations which will be discussed




i 18
ORIGINAL Pratas
OF POOR QUALITY

later have been employed to eliminate the pressure or to
convert the indirect information in equation of continuity
into a direct algorithm for the calculation of pressure,
so that iterative methods may be used to solve the set of

discretization equations much more economically.

y-1 Vorticity-based Formulations

In order to avoid the difficulties associated with
the pressure-velocity coupling for incompressible fluid
flows, one may simply eliminate the pressure by taking the
curl of the Navier-Stokes equations. For two-dimensicnal
fluid flow problems, the elimination of pressure from the
momentum equations (ITI-23) and (I1I-24) leads to a
vorticity transport equation (I11-26). Furthermore, the
velocity components u and v can also be defingd in terms of
a streamfunction (i.e., eq(III-28)) which satisfies the
equation of continuity (III-22). Thus, instead of dealing
with three variables u, v and p in continuity and two
momentum equations, one need to solve only two equations
to obtain the vorticity and streamfunction. The velocity
components u and v, which also presented as the convection
coefficients of vorticity transport equation, are obtained
from the definition of streamfunction (TI1-28). The
troublesome third variable, namely pressure, can be solved

af terwards.
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There are, however, some disadvantages to this
well-known vorticity-streamfunction formulation. Firstly,
the vorticity boundary condition at the wall is not easy
to specify and is often the source of difficulties such as
inaccurate solution and instability. Secondly, it cannot
be easily extended to solve turbulent fluid flow problems.
Thirdly, the extension to three-dimensional flows where a
streamfunction does not exist is rather difficult, and
the complexity of this forwlation becomes even greater
than that of solving directly the continuity and the
three momentum equations.

For three-dimensional incompressible fluid flows,
the elimination of pressure from Navier-Stokes results in
three vorticity transport equations (II11-60) thru (IIT-62)
for three vorticity components. A streamfunction , however,
does not exist. Thus, one need to solve six equations
(ITI-v0) - (T71-62) and (III-64) - (1I11-66) for three
vorticity and three velocity components. (see Dennis et al.
[21), for example). On the other hand, a scalar potential ¢
in additional to three vector potential components W, wy
and y, similar to streamfunction y for two-dimensional
case may be introduced, so that simpler governing equations

(ITI-68) - (III-71) can be obtained. In both formulations,
the complexity is actually greatcr than that of solving

continuity and three momentum equations for u, v, W and p
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directly. Furthermore, the vorticity and vector-potential
components are hard to visualize and interpret in three
dimensions, while complicated vorticity boundary conditions
are often encountered. Thus, a formulation using the
so called primitive variables, namely, the velocity
components and pressure, becomes more attractive in solving
three-dimensional fluid flow and heat transfer problems.
Since fhe governing equation for all of the vorticity,
velocity and scalar/vector potential (a streamfunction in
2D problems) components are special cases of convective
transport equation described in Chapter III with R=Re or
R=0, the finite analytic solution can be employed
directly to obtain the vorticity and vector-potential or
velocity field in vorticity-based formulations. Consider
the two-dimensional case as an example, the only nonzero
vorticity and vector-potential component, i.e., £ and y

are governed by

X + gyy = Re(gt toug, + vgy) (V-1)
by + wyy = -8 (V-2)

Application ot the FA method described in Section
III-2 to equations (V-1) and (V-=1) leads to the finite
analytic alyebraic eouation in a small element as shown in

rig. 7 as




ORIGINAL PAGE IS
OF POOR QUALITY

+ 2317

rn‘l -
bnb{’nb t P °P b

L f.) (Vv=3)
1 P'F

1

e L . |
bp = o7 C T by + bpEy)

where f = Re [(u'c)x-*(v'g)y] is the higher order correction
term defined previously. b ho bP and G are TA coefficients
defined in eq(ITI-56) with A= ROL%‘/?,’*IFM?VP/?. b;b,

and G' dre FA coefficients defined by the same equation

Pp

(1171-56) but with A=8B=R=0.

The higher order correction term in eq(V-1) is
approximated by a representative constant value f, at node
P in this study. For example, among other possibilities,

one may approximate the higher order correction term as

(u'é’,)C -(u'&)w (v'{)n--(v'E,)S

Re | oetie T A 05y vy 1 (VY
o Y n S

where ul Tu, - g and velocity Ug and vorticity e aCross
the east control surface denoted by the dashed line in
Fig. 7 can be obtained by suitable interpolations between
nodal points P and FC. Other variables in eq(V-5) are
defined in a similar way.

When the initial and boundary conditions for § and ¢

are properly specified in the whole domain of calculation,
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the numerical solution for equations (V-1) and (V-2) can

be easily obtained by solving the system of algebraic

LAY S

equations resulted from assembly of equations (V-3) and
(V-4). Details of the numerical procedures, which can be

easily extended to three dimensions, are outlined in the

L3 LUNL JLES IR LR L

following.

(1) Divided the domain of calculation into a suitable

number of small elements.

(2) Specify the initial condition for vorticity at all

grid points at t =0.

(3) Calculate the FA coefficients b%b’ b§ and G' for

streamfunction y using eq(III-56) with R=A=B=0.

Since these coefficients are functions of mesh

sizes only, it needed to be calculated only once

for all.

Solve the Possion equation (V-2) for streamfunction

at all field points by the 9-point FA formula (V-u).

The system of algebraic equations is solved by

tridiagonal algorithm (line by line method) until

converged. Over-relaxation factor is often used to

save the computational time.

(5) Specify the vorticity boundary conditions in terms

of streamfunctions on or neer the boundary.

(6) Calculate the velocity field u = wy and v-:-wx.
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(7) Calculate the FA coefficients hnb‘ bP and G for

vorticity using eq(III-56) with R = Re, Aij= %I«zui;

and B.. :LfRev., at all field points.
iy 2 1]

(8) Calculate the higher order correction term f

ij "

Re [ (u')

. X*-(v'g)y) at all field points using

eq(V-1) whenever nreeded.

(9) Solve the unsteady vorticity transport equation
(V-1) at all field points by the 10-point FA
formula (V-23). The system of algebraic equation is
solved by a tridiagonal algorithm until convergence
is achieved.

(10) Stop if the steady-state criterion is achieved or
the time t exceeds the maximum time period assigned.

(11) If not, return to step (4) for (n+])Th

time step
calculation.
It should be remarked here that when large time step
is used, but the calculation of higher order correction

term is based on the previous time step t error may

n-1"
increase in the transient solutions although the steady
state solution is unaffected. In this circumstance, one

. s n th _.
may use the updated vorticity E‘j at n time step to
calculate the higher order correction term at each internal
iteration. In other word, instead of performing internal

iterations at step (9) only, one may update fij by

repeating steps (6) - (9) until converged E?j is obtained.
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V-2 Primitive Variable Formulations

As mentioned before, the real difficulty in cbtaining
the velocity field in the primitive variable formulation
lies in the unknown pressure field. The pressure field
influences the velocity field through the pressure
gradient terms in momentum equations. Yert, there is no
obvious equation for solving pressure. If the velocity

.; components u and v are thought to be governed by the two
momentum equations (III-23) and (IIT-24), then the
pressure field should be, though indirectly, specified
by the equation of continuity. It should be noted that
when the correct pressure gradient is used in momentum
equations, the resulting velocity field from two momentum
equations automatically satisfies the equation of
continuity. Since there is no particular difficulty in
solving momemtum equations by the FA method, the main
task in using primitive variable formulation thus is to
translate the equation of continuity into a direct
algorithm for the calculation of pressure, so that the
correct pressure field can be employed in solving the
momentum equations.

In order to extract the pressure from the equation of
continuity, one may derive a Possion equation for pressure
by taking the divergence of Navier-Stokes equations. In

two-dimensions, this leads to
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pxx+pyy = 2 (uxvy +ux-+vy)'+ ﬁz'(Dxx.+Dyy)
- (ub_ +vD ) (V-6)
X y

where

D=zu_+v (V-6a)

X y

From equation of continuity D=0, hence, equation
(V-6) reduced to

pxx.kpyy = Q(uxvy-vxuy) (V-7

Thus, one may solve the Possion equation (V-7) and
two momentum equations (III-23) and (III-24) for the
variables u, v and p. However, since the velocity
components u, v computed from equations (III-23) and
(ITII-24) do not necessarily satisfy the continuity
equation, erroneous pressure solution might result from
solving the Possion equation (V-7). Consequently,
nonlinear instability may arise in solving iteratively
between the momentum equations and the pressure equation
(see Roache [1], for example). Many investigators

included part or all of the "mass source'" term Di'

presented in eq(V-1) and forcing DQ;I =0 at (n+1)th time
step, so that a converged solution can be achieved.
However, slow convergence of the solution usually results.

Recently, Singh [22] solved the continuity, momentum and

Possion equation (V-7) alternatively using a momentum
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dominated or momentum averaging scheme. The major !
disadvantage of these formulations is that iterative -

scheme is explicit in solving u, V and p. For 3D PN

problems, the additional dimension makes the iterative
scheme converge very slow. Thus, a method that requires
explicit iteration among velocity components end pressure :
variables is likely to suffer slow convergencz=.

Chorin [23,24] proposed an iterative scheme based on
Helmoholtz's decomposition theorem to resolve the
pressure-velocity coupling problem encountered in two- and
three-dimensional fluid flows. The Navier-Stokes equations
are arranged in a suitable form such that the pressure
gradient and unsteady term are respectively the
jrrotational and solenoidal part c¢. a defined vector
field. An auxillary velocity field obtained by omitting
the pressure term in romentum equations is introduced in
performing the decomposition. The pressure field is then
extracted from the auxillary velocity field by requiring
the equation of continuity to be satisfied at (n+1)th
time step. Goda [25] employed a simple variant of Chorin's
method to solve the two- and three-dimensional driven
cavity flow problems. 1In his study, the samevsplitting
fractional-step method used in Chorin [23] is employed

to calculate the auxillary velocity field, but the

pressure field is solved by a triple sweep iteration
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‘ technigque. In both cases, complicdated houndary conditions
are nceded to keep the numerical accuracy. Takami b
Kuwahdara [261] modified Chorin's method by considering
the acceleration rather than the velocity field as the
dependent variables, the velocity Iield is then obtained
by integration of acceleration tield with respect to time.
Due to the oxplicit nature in time for these numerical

schemes, the time increment is vestricted to At~:Ax/|umdx
for stability consideration.

Several other methods of handling the pressure-
velovity coupling problems used the velocity correction
formulas and pressure correction equations to extract
the pressure from the equation of continuity (Raithby et al.
[20]). These methods are somewhat related to Chorin's
method, but are equally applicable to steady and unsteady
numerical schemes. The basic idea of these approaches is
to express the velocity-correction in terms of the
pressure-correction in an imperfect flow field, so that
the pressure may be updated by requiring the corrected
velocity field to satisfy the equation of continuity.
Depending on the approximations made in updating pressure,
different governinyg equations for pressure may bhe obtained.
Detailed discussions and compdarisons of several pressure
update schemes can be found in Raithby et al. [20]. Among

them, the pressure-update-Patankar (PUP) scheme combined
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with Patankar-Spadling p* equation yives the best result.
In PUP scheme (see also Patankar [111), instead of updating
Pr-.ssure gradually from the pressure correction equation,
4 pseudovelocity field ohtained by omitting the
pressure gradient term in Naviev-3tokes equations is
introduced so that the pressure ficld can be obtained
directly trom a guessed velocity field. Tt is noted that
the pseudovelocity field is somewhat similar to the
duxillary velocity field used by Chorin [23] and Goda [241,
however, no approximation is made in obtaining
pseudovelocities, and the complicated boundary conditiona
tor auxillary velocities are not encountered at all,

In the present study, a stagpered grid for velocity
components which was first introduced by Harlow & Welch
(27) in their MAC method is adopted to avoid the possible
unrealistic pressure and velocity fields resulted from
the finite ditterence representation of

pressure gradient

term in momentum cguations and also the equation of

continuity [11]. Fig. 8 shows the locations of staggered

grid tormation tor Uy v and p in xy=-plane. Where et e

and "' pespectively denote the node location for Ps U
and v, The location of w can be similarly constructed.

The dashed lines vepresent the control volume faces, and

the pressure is caleoulated at the center of the control

volume., For convenience, with e

« Nyt respectively denot ing
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east, north and top; u,, V., W, and pp are assigned
the same index as RIS Vijk’ wijk and pijk ?espectlve]y.
In such a staggered grid system, the 28-point FA formula

for unsteady three-dimensional momentum equation (IT1-1)

in x-direction becomes

.1 u Re , u n-1 u -u
u, - T TBe U (G bnbunb + . be UC‘ —be(Re px'l‘ fe)]

(v-8)

where the pressure gradient term Py is approximated by

Ppc ~ Pp
Py ~ O.f(AxF+ Ax ) (v-8a)

and the higher order correction term fzz Re[(u'u)x~+(v'u)

+(w'u)2] is a representative constant value evaluated
©le

in a similar way as f, in eq(V-5).
In order to resolve the pressure-velocity coupling
problem described before, one may introduce a pseudovelo-

city fictd [11] for u , or G“, based on eq(V-8) or

a, - : n Re . u n-=1 u .u
Yo U 4 B€ U ( }{ bonunb * T Pe Ye - b, fe) (V-9) |

nq(v=9) defines the pseudovelocity and is essentially
eq(V-8) without the pressure. Therefore, the discreticed

momentum equdtion (V=8) can be written as
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u, = 4, - de(pBC-pP) (V-10a)
where
Re bu
d = €
e o.s(AxE+AxP)(G“+3£“)
, T

and the FA coefficients bzb, b: and GY are defined in
eq(I1I1-86). Similarly, the other two momentum equations in

y and z directions can be written as

<
H

v dn(pNC-pP) (V-10Db)

W, 3 Wy o dt(PTC"pP) (V-10c)

where Gn’ Qt’ d_ and d, are defined in a similar way as

u and 4 _.
e e

The momentum equations (V-10a) thru (V-10¢c) can be
solved for u, v and w as long as the pressure field is
somewhat estimated. However, unless the correct pressure
field is employed, the resulting velocity field Ugs Yy
etc. will not satisfy the equation of continuity. Let
the imperfect velocity field based on a guessed pressure

. b % 9 3
field p be u , Vv and w or

* K ( * *

u, = U, - dg pEC"pP) (v-11a)
L RN * (V-11b)
Vn * Vn T “n'Pnc T Pp -1ib

# #
W, T W, - dt(pTC"pP) (V-11lc)
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In order to obtain an improved estimation of pressure
field, such that the resulting starred velocity field u*,
v* and w* , after each iterative calculation for momentum
equations, will approach the true velocity field and
satisfy the discretized equation of continuity, one needs
to know how the velocity components respond to a change
in pressure field. By substracting eq(V=10) from eq(V-11),
three velocity correction formulas relating the

&*

velocity-corrections u, -u, etc. to the pressure-correction
S

p'=p-p can be obtained as follows

't ~ A
- - - - 1] - 1] - ‘
u, = u, (u ue) de(pEC pp) (V-12a)
b ~ A
- = - - U o I -
Vo~ Vi (vn vn) d (p)ic pp) (V-12b)
Y (G, -aD) - d (pd ') (V=12¢)
Wy Wy T Wy =Wy ) = deiPre T Pp V-lzc

If we required the velocity field to satisfy the

discretized equation of continuity of the form of

D=u_+v +w =0
Yy Z
or
- u V -V W, - W
p:-S ¥, D24+ 2:0 (V-13)
P Yp P

* * *
an equation for p' in terms of u , v and w can be

derived. However, due to the implicit nature of velocity

. # f # * a
correction terms u-u , v-v and w-w , where u , v and
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® *
w are function of p in eq(V-11), the resulting pressure

equation for p' by substituting eq(V-1?) into (V-13) would
involve pressure correction p' at all grid points in the
calculation domain, and ultimately becomes unmanageable.
Since the velocity and pressure correction formulas

become trivial in the final converged solution where both

* *

the velocity and pressure corrections, i.e., u=-u , v=Vv |

w-w* and p' =p-p*, are exactly zero, the pressure
correction equation for p' can be considered as an
intermediate algorithm that leads to the correct pressure
field p and have no direct effect on the final solution
[11]. Thus, it is possible to simplify or to omit part of
the velocity-corrections in eq(V-12a) - (v-12¢), so that

a simpler pressure correction formula for p' can be
obtained. The final converged solution should not depend
on the approximation made on velocity and pressure
correction tormulas during intermediate calculations,
although the rate of convergence will depend on the
approximate tormulation of p'. The simplest approximation
as that used in SIMPLI [11,28] or SIMPLER [11] algorithm,

RN

* - .
, v=-v etc. 1n

is to omit the indirect influence G -1
cq(V-12a) - (v-12-~), such that the velocity-corrections

can be expressed explicitly in term: of the pressure

correction p' as
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“e““: = d(pp - Pre) (V-1ta) |
"n“’* = d, (pp = Py (V-14b) '
wt"w? = 4y (py =Py (V=1u4¢)

1f we requived the approximate velocity correction
formulas (V-1ha) - (V-1uc) to satisty the Jdiscretized
equation of continuity (V=-13), then a Poission cquation

for pressure-correction p' can be derived.

a.pL = a pl.taph.t '+ a plaot S
apPp PR * Pye P otaPne T dsPse T odePre
y - 5)
aPhe I (V-15
where
d d d d
d = -—s-— d =z —-—mw— 1 - .—D- 1 - ..—t
N ’ s L] L
e Axg w Axp n AVP v Ay,
- df . db
N EEL v Ym T Rag
t P t Zp
. E + a1 ¢ + +a, +.
tp ‘v 1w n a e lb
and
& u_ - u Vo= Vv_ W, = W,
D= PAY w o, nAv s tA?""E (V=15a)
P p P
The boundary condition for p' can be easily specified
in the following manner. Tf the pres-qure 1o given at a {

%
then the pressure-correction

boundary, it.e., = R

B7 Pgiven
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P

p' at the boundary will be zero. On the other hand, if the

®

normal velocity is given at a boundary, e.g., U, =U,, then

T

there is no need to consider the velocity correction

equation (V-l#a). 'lence, no information for p%C will be

needed [11]. In both cases, p' =0 everywhere at the final ' 3
stage of convergence when D*z 0 in the whole domain of
calculation. Thus, the velocity-correction formulas
(V-14a) - (V-1u4c) becomes trivial as mentioned before.

After obtaining the pressure-correction p' from

eq(V-15), one may update the pressure by letting
p=p + ap' (V-16)

with an under-relaxation parameter . However, extremely
small under-relaxation factor g may be needed for some
problems [20]. Furthermore, due to the approximation made
on velocity-correction formulas, many iterations are
needed to obtain a4 converged solution even if the correct
pressure field p* is used as an ini*ial guess. Since the
pressure-correction equation does a fair job in correcting
the velocities, but a rather poor job in updating the
pressure [111, a4 number of alternatives for updating the
pressure were proposed [20] to avoi!l this shortcoming. In
the present study, the SIMPLER [11] algorithm (i.e., PUP

scheme in Raithby et al. [20]) is adopted to update the

pressure field. By requiring equations (V-10a) - (V-10c)
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to satisfy the discretized equation of continuity (V-13),

one obtains a Possion equation for pressure as

= +
PP T FePrc T APyc * APy *t A po. t apo, ¢
ayppe = B (V=17)
where
4 -0 Vo=V W, - w

A e w n s t b

= + + -17¢
D e Ayp AZP (V-17a)

and ap, a, a etc. are defined in eq(V-15), It is noted
that eq(V-17) is similar to eq(V-15), and the boundary
condition for pressure is the same as that for pressure-
correction p' also. But there is no approximation made

in obtaining eq(Vv-17). Thus, if a correct velocity field
is employed as the initial guess, eq(V-17) would at once
give the correct pressure field. In this fashion, one can
extract the pressure directly from an estimated velocity
field, and thus avoid the slow convergence resulted f{rom
the approximated velocity-correction formulas (V-14a) -
(V-14c). The pressure-correction (V-15) is used to correct
only the velocity field, so that a better estimated
velocity field can be obtained.

For unsteady fluid flow problems, the flow field is

required to satisfy the equation of continuity at each time

step. Unless a correct initial field which satisfy the
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equation of continuity is given, it is not possible to

obtain a physically meaningful transient flow field.

For problems where the initial and boundary conditions

are properly specified, the transient numerical solution

can be obtained in the following manner.

(1)

(3

(W)

(5)

()

(8)

NDiscretize the domain of calculation into suitable
number of small local elements.

Specity the initial condition for velocity field,
or generally at (n—].)-(hh step.

The velocity field at (n-l)t‘n time step is emplovyed
as the initial guess for the velocity field at nrh
time step.

nb* Prb> Php etees

and also the FA coefficients for pressure and

Calculate the TA coefficients b b

pressure-correction equations, i.e., ags A, etc.

. . . u Y
Calculate the higher order correction terms f~, f

and ¥ if needed.

Calculate the pseudovelocities U, v, w from eq(V-9)
etc, in terms of velocity field of (n--l)t’h time
step.

Calculate D from »q(V-174) and solve the pressure
equat ion (V-17) by tridiagonal algorithm to obtain
the pressure field; p.

Treating this pressure field, p, as guesscd pressurc

%
field p | solve the momentum equations (V-1la) -




ORIGINAL Prgr &3 112
OF POOR QUALITY

®

(V-11¢) to obtain the starred velocity field u ,
N » . . .

v and w . The system ot algebratc equations 1s
solved by tvidiaponal alporithm.

LI
Calculate the mass source term N in eq(V=1ha),
and hence solve the pressure-correction vquation
(V-15) to obtain p'., The system ot algebraic equa-
tions is solved by the tridiagonal algorithm also.
Correct the velocity tield using velocity-
corvection tormulas (V-14a) thru (V-1luc), but do
not correct the pressure. The velocity field u, v
and w o thus obtained should satisty the cquation

of continutty (V-13).,

Return to step (8) and repeated the steps (4) to

(1O until converyence criterion is achieved.

. ]
N > | 1 Cs
1o m\l)\llijk!\{.

Stop 1t the steadv-state criterion is achieved

. n n-1 .
(i.e.0, maxJu,,, =u,:, | <« v etc), or the time t

1ik i1jk

exceads the maximum time peviod assigned.

. ) : th .
Tt not, return to step (3) tor (n+l) time step
caleulation.

For problems where only the steady-state solution is
sought | one may relax the converygence crviterion and use o
laryger time incvement tor intermediate velocity tield
calculations in this time marching procedure as long as

Juring the computations the variables become stationary.
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It should be remarked here that if uniform grids are
employed to construct the staggered grid coordinate system,
then the no-slip conditions cannot be satisfied exactly
on the moving and stationary walls. Thus, fictitious
boundary conditions outside the solution domain are used
for velocities parallel to the walls. [20], [25]. On the
other hand, if nonuniform grids are employed, then the
no-slip conditions can be exactly satisfied by choosing
control volumes ot zero thickness along the moving and
stationary walls [11]. In this study, the FA solution is
formulated in a general nonuniform grid local element and
control volumes of zero thickness are chosen (see Fig. 8)
along the walls for the numerical calculations of two- and

three-dimensional fluid flow problems.
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CHAPTER VI

TXAMPLES OF ONE-DIMENSIONAL
FLUID FLOW PROBLEMS

In this chapter, the unsteady FA formulas derived in
Section III-1 are tested for several unsteady linear and
nonlinear one-dimensional convective transport equations.
They are

(1) Large time (steady-state) solutions of linear

convective transport equation

u, + cu_ = au 0
t X XX

u(x,0) =0 0<x

u(0,t) =1, u(l,t) =0, t>0

where the convective velocity <, in general, is a
function of space and time.

Fxact solutions for t >« are respectively

(a) c=0, u =
e -
1, - (VI-1b)

aln-1) (1.0 - (x+0.01)"

E , (VI-1c)
(x+0.0D) (1.01)" - (0.01)"
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(2) Large time (steady-state) solution of nonlinear

convective transport equation

Uy

ul(x,0)
u(0,t) =1, u(l,t) =20

Exact solution for t > = is

1
%r( x =~ 1)
l ~e

13
s c' = coth %E (VI-2a)

S (x-1)
o

l1+e
Transient solution of nonlinear convective

transport equation (Burgers equation)

ol - < X < ©
XX

1 ®x <0
u({x,0) =

0 x>0
u(-o,t) =1, u(e,t) =0 t>0

Exact solution for eq(VI-3) is given in [29] as

1 (VI-3a)

ulx,t) = p——
erfc(-x/2v/at)

erfel(x-t)/2vat]

1+exp[7la(x—%-t)]

VI-1 Linear Burgers Equation

In case (1), the finite analytic solution for the
linear convective transport equation (V[-1) is examined

for its large time behavior at several prescribed
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convective velocities (a) ¢=0, (i.e., heat equation)
(b) ¢ =1 with a varying from 0.001 to 0.1 and (c) ¢ =
a(n-1)/(x+0.01) (variable c(x)) with n ranging {rom ?
to 20. Different mesh sizes ranging from 0.025 to 0.2
and time increments of 0(h) to O(lOuh) are employed to
study the stability and the accuracy of three FA
formulations described in Section III-1l. In obtaining
the large time solution with small time increments,
many time steps are needed which is not necessary unless
instability occurs. On the other hand, if the numerical
solution is stable, very large time increment can be
used, then the steady-state solution can be obtained in
one or two time steps, although the transient solutions
may not be accurate. Since the three FA formulations
(I1r1-10), (ITIT-15) and (T1II-20) considered here are

all implicit in time, no stability problem is
encountered even if very large time steps are used.

It is thercfore always possible to obtain the steady
state FA solution of eq(Vi-1) efficiently by using
large time ircrements in equations (ITI-10), (ITI-15)
and (TIT-20). These steady-state results are shown in
Tables (16) thru (19). It is seen that the steady-state
FA solution for heat equation (c = 0) approaches the
exact solution (VI-la) in two or three time steps with

time increment t = 1000 and grid size h=0.2 for all of

-
- e v o e A DR ASONTAR
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the three FA rormulations considered. Similarly, the
steady-state I'A solution for linear convective transport
cquation of unity convect ive velocity (¢ = 1) converges to
the exact solution (VI-1b) in 2 to y time steps for each
tormulation as those shown in Tables (17) g (18). However,
small eprpor although negligibly small ape cncountered when
second-order nolynomial initial function (FASP) is employed
in the A tormulation, while the eXact convergence ig
achioved in PAVL and hybeid PA formulations.

Since the construct jon ot exponential and lineyr
mitial functjon is based on the dnalytic solution of
steady one-dimensional convect ive transport cquation of
coenstant convect jve velocity ¢, the oxact solutions shoull]
be recovered in FARL and hvbrid FA tormulat ions 4s shown
in Tables (16) they (18, 1t o therefore desirable to
choone some test cayses with variable convect ive velocities
to rigorously test the dccuracy of three FA formulations.
In this atudy, a rapid-varving velocity field of ¢/q =
(=Y 001 §s chosen for this parpose. 1t g found that
the vesults top Jitterent values of noranging from ) to 0
dnree very well with the exact golutions (Vlele), For
example . cven fop The cane nos 0 Using a coarsge prid of 0,1,
the maximum ecrpor o StIlY less than 0,ns for all of the

three FA formulations g shown in Table (19),
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( 1t should be vemarhed here that the PARL and hybaid
FA tormulat ions give the same transient solutions for each
casne tabulated in Tables (18) thrua (19) due to the use of
lapge time increments. In these cases, the inf luence from
previous time step becomes vanishingly small, thus vesults
Thothe same A coetficients and same transient solutions,
This iu. however, not necessary true when small time
increment s are used. Tt should be remarked heve aluo that
the 9-point FA toraula (TTT=10) obtained by PAST
Lormulat jon can not be applicd divectly to the initial
step ot caleulation since there is only o neighboring,

nodal points available. In thiv study, tov the tirst time
step of cateulation, a t=point F'A tormula Jderived from
the 9=point FA tormula (1T1=10Y by veplacing v by 7‘, W
by -l;( Ut u) and ag, by 1(u tu L) in used. The A
A (T H Y & woY o U e
tormula thus obtained should be exactly the same an the
one derived in terms of second-order polvnomial initiad

tunct ion and linear boundavy function .

VI-2 Nonlinear Buregers Bguation

For the linear convective transport equation (VI- 1)
considered in case (1), the convection coetticient is a
presevibed tunction ot space and t ime, thus, there is

little problem in determining the coeft icients A and R.

However, nonlinear problems are olten encountered in
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many engineering applications. It is therefore desirable '
to study the nonlineavity and linearization schemes
adopted in FA formulations for solving nonlinear convective
transport equations. In cases (2) and (3), the nonlinear
convective transport equation of convective velocity u
(i.e., Burgers equation) is tested in a bounded and an
infinite domain to obtain the steady-state or transient
solutions. In case (2), different mesh sizes ranging from
0.025 to 0.1 and time increments of order of h to 105h
are used to study the accuracy and stability of three

FA formulations. The convection coefficient in each

local element is approximated by a representative
constant (area-averaged A::%-aﬁ in this study) known from
previous time steps, so that a marching process can be
used without iteration at each time step. It is found
that although the steady-state solution can be obtained
much more efficiently by using larger time increments,
there is, however, little saving in computational time
when time increment exceeds 103h. This phenomenon, which
differs very much from that for linear problems, is due
to the approximation made on the convection coefficient.
When large time increment is used, the convection
coefficient £ based on previous time steps is far from

accurate, Consequently, approximately same number of

time steps is needed for 1 >103h in order to achieve
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the same accurate large time solution. If transient
solution is desired, one may either use a small time
increment or a somewhat larger time increment but with
internal iterations at each time step to update the
convection coefficients.

In Figs. 9(a) and 9(b), the transient solutions of
Burgers equation for a=0.1 and 0.01 are shown at t =1,
21, 31, 41 and 1071 for FAEL (or hybrid FA) and FASP
formulations. As mentioned before, the transient FA
solutions are not accurate in these figures due to large
time increments used. But it shows that the steady-state
solution can always be obtained economically in a few
time steps and yet no stability problem is encountered.
It can be seen that the results obtained by FAEL and
FASP formulations are almost identical, while the results
obtained by hybrid FA formulation are exactly the same
as those obtained by FAEL formulation due to the large
time increment and the same exponential and linear initial
function employed. It can also be seen that the

steady-state solution at t = 10t obtained by FA formulations

agree very well with exact solutions represented by solid
lines. This demonstrates the accuracy of the FA method.
In order to compare the dependence of FA solution on the

grid sizes, the FA solution for the case a=0.01 is also

calculated using coarser grid of 0.1 and 0.05. Even in
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such a coarse grid, the agreements between the exact
solution and FA solution are still very good. For example,
if h=0.05 is used, the steady-state velocity u at x = 0.95
is 0.983788 for FAEL or hybrid FA formulations, and is
0.983791 for FASP formulation. The errors are less than
0.3% when compared with the exact solution of 0.986614,

In cases (1) and (2), the stability and accuracy of
three FA formulations for one-dimensional linear or
nonlinear convective transport equations are tested using
several different time increments and mesh sizes. No
instability problem is encountered even when very large
time increments of O(lOu) are used. Besides, the
steady-state solutions agree very well with exact solutions
even if large mesh sizes of 0.1 or 0.2 are employed. For
case (3), a wave propagation problem [30] defined by
eq(VI-3) is invoked in the test for the accuracy of the
FA transient solutions. The problem is so'ved for a= 0.01
and 0.001, where a step function is used as the initial
condition. After a long time, the exact solutions should
be propagating with a constant speed V=0.5 and preserve
the large time solution profile. In the present FA
calculation, a mesh size of 0.01 and a time increment of
0.002 are used for both cases. After 20C time steps of

calculation, no more changes in wave shapes are

observed in FA solutions, thus the long time solutions
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can be assumed. The results are shown in Pigs. 10(a) and
10(b) tor a=0.,01 and 0.001 respectively. l'or the casc of
a=0.01, the wave shapes obtained by three different FA
formulations agree very well with the exact solution.
However, usmall phase errors ot about 1% are encountered
in time domain for FASP and hybrid FA foruulations. The
FA solutions are propagate at V=0.505, 0.500 and 0.u493

Por PFASE, PAEL and hybrid FA formulations, which dittfer

slightly ftrom V= 0.5 tor the exact solution. These phase
crrors are partly due to the approximation on boundary
conditions and partly due to the linearization of
convection coettficient, Tt is possible to reduce these
phase errors by employing a better estimated convection
coefticient based on two or more time steps interpolation
s0 that the nonlinearity of the governing equation can ble
¥ more accurately simulated. However, the internal iterations
- needed may make the procedure very time-consuming. Thus,
in the present study, the convection coetficient is simply
approximated by a constant known trom previous time step
tho1s 8° that a non-iterative marching process can be
employed.
For the case a = 0.001 where very shavp gradient is
encountered, three FA formulations begins to differ f{rom

the exact solution not only in the speed of propagation

but also in the wave shape. Tt can be seen that the phase
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error is small in FASP formulation since a second-order
polynomial boundary approximation is used. However,
unrealistic overshoots and oscillations which come from

the inadequate second-order polynomial initial function

are seen in the downstream. On the other hand, physically
realistic solutions are obtained in FAFL and hybrid FA
formulations although ths phase errors and the discrepancy
in wave shape are somewhat larger due to the coarse grid
and also the simple linearization of convection coefficient
emplovyed.

It is noted that the wave shapes obtained by FAEL and
hybrid FA formulations are not exactly the same even
though same exponential and linear function is employed.
This indicates that an improvement in the boundary
approximation in time domain may improve the accuracy in
space domain also. Yence, a FA formulation using exponential
and linedr initial function and higher order boundary
approximations should reduce the phase error and also
gives a better agreement in wuave shape with exact
solution. The derivation based on higher order boundary
approximations is, however, not given in the present study
because the cxtension to multi-dimensional problems is
quite complicate. Furthermore, the steady-state solution

is completely unatfected by this improvement.
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CHAPTER VII

EXAMPLES OF TWO~DIMENSIONAL
FLUID FLOW PROBLEMS

In previous chapters, it is concluded that the FA
formulations using exponential and linear boundary
approximations give most accurate results and require
least computational time among several FA formulations
considered. Thus, in studying two-dimensional fluid flow
problems, the FA formula based on exponential and linear
boundary approximations is employed to solve two fluid
flow problems where comparison with experimental
measurements ur other theoretical or numerical calcula-
tions are available. The two problems are

(1) Incompressible flow in a square cavity driven by
a moving wall.

(2) Development of vortex street behind a rectangular
block.

The two-dimensional driven cavity flow is often
chosen for the purpose of examining the numerical
solutions of Navier-Stokes equations [5,6,13,25,26,31-48].
This ideal prototype nonlinear problem is of fundamental
importance because it is a part of the large steady and

unsteady separated flow. In addition, it is a flow where
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the fluid is set into motion by the viscous shear on the
moving plate and the viscosity and nonlinear convection
affect the entire flow region. Their geometry simplicity
make them by far the best model problem for testing new
numerical schemes.

The numerical methods presented in the literature
for the driven cavity flow differ not only in problem
formulations, discretization schemes, boundary
approximations for vorticity and pressure on the no-slip
walls, but also in the method used to solve the resulting
system of algebraic equations. Detailed reviews of
previous works and the comparison of their numerical
results in the two-dimensional driven cavity flow are
given by, among others, Vahl Davis & Mallinson [32], Tuann
£ Olson [331, Gupta & Manohar [35] and Chen et al. [6].

In this study, the improved 10-point FA formula is
employed to solve the two-dimensional driven cavity flow
problem in both the vorticity-streamfunction and the
primitive variable formulations. The unsteady approach
is used to obtain both the transient and steady-state
solutions. If only the steady-state solution is sought,
a good initial guess (for example, if known, a flow

profile at lower Reynolds number) and large time

increments can be used to obtain the steady-state solution

much more economically. Furthermore, the convergence
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criterion for intermediate time steps can be relaxed to
reduce further the computational time.

Although there are several experimental works fus,50]
and numerical solutions available for the steady
two-dimensional driven cavity flow problems, the detailed
results for the transient behavior of the starting cavity
flow are, however, very limited. It is thus somewhat
difficult to judge the accuracy of the transient solutions
obtained by the present FA method in the starting cavity
flow test problem. In order to test the applicability of
the 10-point FA formula for unsteady two-dimensional
convective transport equation more rigorously, it is
desirable to choose an unsteady flow problem with unique
feature and comparable solutions. In this study, the
development of vortex street behind a rectangular block
is chosen for this purpose.

Numerically, the vortex street prediction behind a

rectangular block was first investigated by Fromm & Harlow

[51]. In their study, the upstream and downstream boundary

conditions were assumed to be periodic. Artificial
perturbations in vorticity field were introduced to
trigger the vortex shedding process. Mumerical results
for streamlines, stationary streamlines and streaklines
patterns are presented for Re = 50, 100, 200, 300 and 6000.

Smith & Rerbbia [52)] employed a finite element formulation

v W 1y RO MWL 3T
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to solve a similar problem for Reynolds number of 20, 50 '
and 100. Due to the relatively long obstacle (0.4m long
by 0.166m wide) they used, the vortices are rather weak
and were not observed for Reynolds numbers under 100.
In both cases, rather small time increments are needed to
obtain accurate transient solutions. As to the experimental !
works, the Strouhal numbers for several similar shaped g
blocks were given in [53]. For flat plate obstacle |
with sharp edges, the Strouhal number reaches a maximum
value of 0.16 around Re=100, and then gradually decreases
to 0.13 for very large Reynolds numbers. Although
experimental measurement of transition from laminar to
turbulent vortex shedding is not known for rectangular
block, however, it is observed for cylindrical obstacle
to occur around Reynolds number of 150 [53]. In Prandtl ¢
Tietjens [54], streamlines of flow past a flat plate
were shown for Re = 0.25, 10 and 250. Vortex street flow
pattern was observed at Re = 250, while symmetric flow
patterns were observed at lower Reynolds numbers of 0.25
and 10.

Since it is not easy to specify an initial velocity
field that satisfies the continuity requirement for vortex
street problems formulated in terms of primitive variables,
the vorticity-streamfunction formulation is employed in

the present study. Relatively coarse nonuniform grid
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are used to obtain the physically meaningful solutions
economically. In addition, large time increments are

employed to further reduce the computational time needed.

VII-1 Two-Dimensional Starting Cavity Flow in
Vorticity-streamfunction Formulation

Consider a square cavity as shown in Fig. 11, where
the cavity with depth and width of length L is initially
filled with incompressible fluid at rest. The bottom wall
is then set to move with a constant speed U, in the
positive x direction when t > 0. The other walls are kept
at rest. The flow is assumed to be two-dimensional with

constant transport properties and laminar.

Introducing the dimensionless variables

U
N U==% v = and t:-—Eg
0 ° 0

the dimensionless Navier-Stokes equations in

vorticity-streamfunction form can then be written as

+ VE (VII-1)

Exx T8 = Re (g, * ug, y

yy

where the vorticity g is defined by

“Wax * ¥yy) (VII-2)

-¢x (VII-2a)
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The Reynolds number Re = UOL/v is based on the
velocity of the moving wall U, and the cavity depth L.
The no-slip and impermeable conditions are specified on

the four boundaries of the cavity as follows
(1) On the hottom wall v (VII=3a)
(2) On the top wall P (VII-3b)
(3) On the left wall ¥ (VII-3c)

(4) On the right wall Y (VII-3d)

The vorticity boundary conditions for eq(VII-1)
may be approximately derived from the above boundary
conditions using Taylor-series expansions of the
streamfunction from the wall to interior points normal
to the wall. Many alternatives of boundary conditions
were investigated by, among others, Vahl Davis & Mallinson
{321, Gupta & Manohar [35], Benjamin & Denny [37],
Quartapelle [38] and Gupta, Manohar & Noble [36]. In this
study, the simple first-order and second-order boundary

conditions are adopted. They are

(1) First-order vorticity boundary conditions

2y
_ w=1 2 9 - .
vk A (,5%)w (VII-4a)
W

(2) Second-order vorticity boundary conditions
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8y

- lp

w=1 w=2 3 9

2h? - E; (3%0w (VII-ud)
w

where the subscripts w, w-1 and w-2 denote nodal points

on the wall, and one or two points in from the wall. n is
the outward normal measured from the center of the cavity,
h is the first grid size from the wall. In eq(VII-tdb),
the first two mesh sizes near the wall are chosen to be
equal (both egqual to hw).

As to the initial condition, a zero initial vorticity
field is given at t =0 to simulate the initial development

of starting cavity flow.
E(x,y,0) =0 (VII-S)

Following the numerical procedures described in
Section V-1, the governing equations (VII-1) and (VII-2)
with boundary conditions (VII-3), (VIT-%) and initial
condition (VII-5) can be easily solved to provide the
numerical solutions for starting cavity tlow. In thiu
study, the starting cavity flow is tested for Reynolds
numbers of 100, 400, 1000, 2000 and 5000 in several
uniform or nonuniform grids ranging from 11x11 to 51x51
and time increments from 0.05 to 2.0. The transient
solutions for Re = 1000, 2000 and 5000 are studied in

details using both the first- and second-order vorticity
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boundury conditions. The coavergence criterions between

. . . -7
two iterations at each time step are 10 for stream-
function and 107" (Re = 1000 and 2000) or 10™° (Re = 5000)
for vorticity respectively. An over-relaxation factor of
1.6 tor the internal itevations ot streamfunction is used
to reduce the computational time needed. For steady flow
caleulation ot Re = 100 and 400, o nonzero initial
condition and large time increments are used to obtain
the FA solutions in order to save computational time.
The converpence criterion for internal iterations of
streamfunct ion and vorticity are atso relaxed to reduce
the computational time,

A typical transient solution ot starting cavity flow
based on the second-order vorticity boundary condition
(VIT=-ub)Y {5 shown in Fipgs. 12 and 13 for Re = 1000. A
B1xdl nonunitorm prid syvstem is used with mesh sizes
arranging as 0.014% (8 nodes), 0.025 (8 nodes), 0.03 (1b
nodes), 0,0 (8 nodes) and 0.01% (4 nodes) in x and v
Jdirections. A time increment of 0.1 is used tor the
tivst 40 time stepn, atter that a time increment of 0,16
is employed. The teady-state solation is achieved at

11

t - 40 with Au-«lo‘ll and AE <107 hetween two time steps.

Al

't can be ceen from Fipg. 12 that the vortex center moves

from the lower left corner at the ecarly time of t -1

towart the conter of the cavity at later time of t = uQ,
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while the vorticity penerated by the moving wall is
convected and diffused gradually to the downstream and
the center of the cavity as shown in Fig. 13. A careful
study shows that o separation bulbh {irst occurs near the
middle section of the pight wall avound t = 2, This
separation bulb continues to grow and moves downstream
while another separation bulb appears at the upper-ripht
corner. As time increases, the separation bulb at right
wall ia conveeted turther upward and cventually emeryes
with the enlarvged upper-right corner separation vegion
avound t b an shown in Fige 100(e)0 As the atrength of
the primary vortex continues to grow during transient
state, the uppev-right corner separation balb reaches
Gmaximum zize and then begins to shrink avound t = 10,
After t = 10, the upper=right sccondary vortex continues
to ahrink Jue to the turther incrvease in the strength
of the primary vortex, but the upper-lett secondary
vortex enlaprges pradudally to ita maximum zize. When the
steady=sntate solution isn achiceved arvound t 280, the
strength ot the primary vortex reaches fta maximum value
ot V.10I0K2, o'n the other hand, the upper=pright secondary
vortex reduces to about halt ot its maximum size. The
stoadv=state solution obtained in the present caleualation

agrees fairly well with those obtained by Takemitau [39]

and Renjamin & Denny o7 wheve hoth works employed a
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large number (101x101) of uniform grid in obtaining the
numerical solutions.

In Fig. 13, the development of vorticity exhibits a
boundary layer like behavior near the wall. At the initial
stage of development, the high velocity gradient along
the moving wall generated a strong vorticity field near
the moving wall and the lower-right corner. This highly
concentrated vorticity field is then convected downstream
by the fluid driven by the moving wall. At the same time,
a4 negative vorticity tield starts to generate near the
right wall via the increased velocity gradient along the
right wall. Eventually, the positive vorticity field
generated by the moving wall and the negative vorticity
field generated by the stationary right wall are
transported downstream and simultaneously diffused into
the center of the cavity. When the flow approaches
steady-state, the vorticity field generated by the moving
and stationary walls is then balanced by the viscous
dissipation of vorticity field. Thus, even at the
steady=-state, the vorticity is continuously generated by
the moving and stuationary walls and diffused into the
cavity creating a boundary layer phenomenon near the walls

with a nearly uniform vorticity core surrounded the

vortex center.
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ft‘ Quartapelle [38] investigated the starting cavity

: flow for Re = 1000 using a time increnent of 0.05 for 300
time steps. The transient streamlines and vorticity
contours exhibit similar patterns as those obtained in
the present study. However, detailed comparison can not
be meaningfully made because sccondary vortices were not
shown in his study. Furthermore, physically unrealistic
oscillations were encountered in Quartapelle's calculation
of vorticity field. It is suspected that these
oscillations would be amplified gradually by the
instability of his scheme, and his solution may become
unstable if the calculation is carried beyond t =15. On
the other hand, smooth results are obtained in the present
study for a4 large time even if coarse meshs of 21x21

and 31x31 are used.

The numerical solutions obtained in coarser nonuniform
grids of 21x21 and 31x31 exhibit the similar transient
behavior as those shown in Figs. 12 and 13 for finer grid
of 41x41. However, the strength of the primary vortex is
somewhat lower and the sizes of secondary vortices are
somewhat larger. Figures 12 thru 15 compare the steady
state solutions of Re = 1000 in 4lxu41 grid with those
using nonuniform meshs of 21x21 and 31x31. It can be seen

that there is not much difference between results obtained

by 31x31 and 41x41 nonuniform grids. Thus, one may
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conclude that the transient solution obtained with 41xul
grid is sufficiently grid independent and accurate.

In this study, both the first- and second-order
vorticity bouadary conditions are tested for selected
cases. The result shows that the second-order vorticity
boundary condition gives better performance for all of the
cases considered. For example, when a nonuniform grid of
21x21 with mesh size ranging from 0.03 to 0.07 is used to
obtain the streamlines and vorticity contours shown in
Fig. 14 for Re = 1000, there is a 3% improvement in the
maximum value of streamfunction (i.e., 0.0768 vs 0.0792).
But the solution employing the first-order vorticity
boundary condition gives the solution of maximum
streamfunction to within 1% (0.0989 vs 0.0998) of that
employing the second-order vorticity boundary condition
when a finer mesh of 37x37 is used. Benjamin & Denny [37]
reported a much larger improvement in their study of
Re = 1000 using an equal grid of 41x41 with the second-
and third-order vorticity boundary conditions. The fact
that the present study gives more consistent results may
be due to that better numerical scheme and finer mesh
sizes near the wall are adopted.

It should be remarked here that the vorticity

boundary condition happens to be a particular troublesome

source of causing divergent or unrealistic solutions for
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many numerical schemes. Thus, many sophisticated

treatment of boundary conditions were proposed to obtain
reasonable solutions. For example, Greenspan [40] updated
the streamfunctions on an "inner boundary" located one
mesh point in from the boundary by a formula different
from those for other field points to calculate the
steady-state cavity flow up to Reynolds numbers of 105.
Nallasamy & Prasad [41,42] used the similar type of
vorticity boundary condition as that of Greenspan [40] to
obtain the numerical solutions for steady driven cavity
flow over a wide range of Reynolds numbers ffom 0 to
$0000. Nallasamy & Prasad [42] reported that two major
eddies flow pattern would be encountered in numerical
solution if the additional formula for streamfunction on
the inner boundary was not employed. Vahl Davis & Mallinson
[32] studied this type of boundary condition in both
uniform and nonuniform meshs and concluded that the
overspecification of streamfunction on the "inner boundary"
would force the boundary layer to adhere closely to the
wall. For high Reynolds numbers, this could compensate

the effect of the false numerical diffusion by increasing
the size of the core region. Thus, unless v.ry, fine meshs
are used, the results obtained in this way are not

reliable for Reynolds numbers higher than 1000. Another

commonly used higher order vorticity boundary condition
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is obtained in the following form by modifying the first

truncated term in eq(VII-uta)

3y &y
= w-l 3 3y - w-l -6
£, = = —:Fr— " (3n) 5 (VI1I-6)
W W

TSRO

This second-order accurate boundary function was

used by, among others, Gosman et al. l43], Bozeman g

Dalton [u4] and Vahl Davis & Mallinson [32]. Vahl Davis

€ Mallinson [32] reported that the central difference
numerical scheme can be stabilized for Reynolds numbers
higher than 1000 if the second-order vorticity boundary
condition (VII-6) is employed. Their attempt for Re = 5000
was, however, not succeeded due to a similar numerical
instability encountered in Re = 1000 when the first-order
vorticity boundary condition (VII-4a) is used. Recently,
more sophisticated vorticity boundary conditions based on
fourth-order governing equation for streamfunction were
derived in Quartapelle [38] and Gupta et al [36]. However,
the performance of these schemes in predicting high
Feynolds number tlows has not been rigorously tested.

Tt can be seen from these discussions that the convergence
properties tor various numerical cschemes depend strongly 1

on the treatment which is adopted to avproximate the

vorticity boundary conditions. Moreover, even when
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converged solutions are obtained. there are still large

discrepancies of local and global quantities between
apparently comparable calculations. Most of the researchers

tend to believe that the discrepancies come from the

approximations made on vorticity boundary conditions. It

is, however, in view from the present study, more likely ’
that numerical scheme itself and not the vorticity boundary
condition which is responsible for these discrepancies

and instability phenomenon. In the present study, even the
simplest first-order vorticity boundary coudition still
gives reasonable solutions for all cases considered.
Furthermore, the use of higher order vorticity boundary
condition does not significantly change the global or

local features of the numerical solutions. Thus, the
stability of the present FA method is demonstrated. The
all-positive TA coefficients and desired upwind shift on

FA solutions gurantee a physically realistic and stable
solution with minimum false numerical diffusion as long

as vorticity boundary conditions are properly posed. !
However, it is found that smaller time increments are
needed to obtain satisfactory solutions if higher order
boundary conditions are used. For example, when the
second-order vorticity boundary condition (VII-ub) is

employed for Re = 1000 with W1lxul nonuniform mesh, the

attempt to use 4 time increment larger than 0.2 is not B
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Succeeded, while, if the first-order vorticity boundary
condition (VII-4a) is used for Re = 2000 in the same
nonuniform grid, time increments as large as 0.4 can be
used without difficulty and larger time increment is
still possible for the calculation if one needs only the
steady-state solution. Similar situations are observed
in other test cases. Thus, it is sugpgested from the
present study that finer mesh sizes near the wall in
company with lower order boundary approximation is
preferred in obtaining the approximated boundary vorticity
values;

For the starting cavity flow of Re = 2000, the same
41x41 nonuniform grid is used to obtain the transient
streamlines and vorticity contours as those shown in Figs.
16 and 17 respectively. The simplest first-order vorticity
boundary condition (VII-4a) is employed to update the
boundary vorticity values in every iteration. Time
increments from 0.1 to 0.4 are used for 240 time steps
until the steady-state solution is reached at t = 60 (t =
0.1x40 (steps) + 0.2x8C + 0.3x80 + 0.4x40) with ap<10-11
and Af < 10-11 between last two steps. After that, the
second-order vorticity boundary condition (VII-ub) is
employed for 50 time steps to obtain an improved steady

state solution at t = 65, The transient solution for Re =

2000 exhibits similar behavior as those for Re = 1000 before
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le ' t = 20, except that the separation bulb on the right wall
_appears earlier around t =2 at a lower position as'shown.
in Fig. 16(b). After t =20, the upper-right and
upper-left secondary vortices almost reach their
stationary sizes, while a third secondary vortex comes

to exist near the lower-left corner around t =21. The
steady-state solutions mostly agree with those obtained
by Vahl Davis & Mallinson [32]1, Pepper & Cooper [us] and
Chen et al. [5,6] where the existence of a similar third
secondary vortex is reported. The appearance of the

third secondary vortex is also predicted in Olson & Tuann
[34] and Bejamin & Denny [37] for comparable Reynolds
numbers. However, the shrinking of the upper-right
secondary vortex was not predicted in their study. In
rigs. 16(i) and 17(i), the steady-state streamlines and
vorticity contours based on second-order vorticity
boundary conditions are given for comparison. It can be
seen that the use of the higher order vorticity boundary
conditions does not significantly improve the global or i
local features over those obtained with the firsf-order
vorticity boundary conditions. This is because small mesh
size of 0.015 is used near the wall, in the present
calculation, the strength of the primary vortex obtained
by the second-order vorticity boundary conditions

increases only for about 1% (0.0934 vs 0.0943) over that

by the first-order vorticity boundary conditions.
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The FA solution of starting cavity flow for Re = 5000 t
is also calculated using a 51x51 nonuniform grid with
mesh sizes ranging from 0.01 to 0.025. A time increment
of 0.1 is used for the first 200 time steps, after that
a time increment of 0.15 is used. The numerical solutions !

shown in Figs. 18 and 19 are obtained using first-order

vorticity boundary condition (VII-4a) until t = 47. The
second-order vorticity boundary condition (VII-ub) is then
used to obtain the steady-state solution at t = 52.
Comparison of solutions for different Reynolds numbers
shows that the separation bulb on the right wall occurs
earlier and closer to the lower-right corner as Reynolds
number increases. Furthermore, the third secondary vortex
enlarged considerably while tertiary vortex comes to
exist at upper-right corner. These features agree well
with the study of Benjamin & Denny [37] where the
numerical solution for Re = 10000 was obtained in an
151x151 nonuniform grid. Due to the relatively coarse
grid used in the present study, the strength of the
primary vortex for Re = 5000 is somewhat lower when
compared with those obtained by Benjamin & Denny 137] for
Reynolds numbers of 3200 and 10000. If sufficiently fine
grids are used, it is expected that the strength of the

primary vortex will increase and the sizes of upper-right

and upper-left secondary vortices will decrease. Besides,
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}‘ the tertiary vortex driven by the upper-right secondary
vortex may disappear or at least shrink in size. One may
conclude that with increasing Reynolds number, the
upper-right secondary vortex starts to shrink around Re =
2000, while the upper-left secondary vortex begins to
shrink at a higher Reynolds number around 5000. It is
also expected that the size of the lower-left secondary
vortex will decrease for much higher Reynolds numbers.
Benjamin & Denny [37] made a different conclusion that
the sizes of secondary vortices will continue to increase
with increasing Reynolds number with a series of
counterrotating vortices occupied the two upper corners.
This conclusion seems to be unreasonable because the
continuous enlarging of secondary vortices eventually
would result in a large separation bulb near the top wall.

It is noted that the movement of vortex center for
Re = 5000 during starting phase is somewhat different from
those for Re = 1000 and 2000. Unlike the solutions for

Re

1"

1000 and 2000, the locus of the vortex center for

Re = 5000 makes a curl figure "o motion. The vortex center
begins to move from lower-right corner to a position
higher than the geometric center around t = 10 (Fig. 18(e))

and continue to move leftward. After passing a peak, the

vortex center is convected downward to approximately at

mid-height of the cavity as that shown at t = 20 before
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it reaches the steady-state position slightly below the
cavity center. For Re = 1000 and 2000, the locus of the
vortex center simply moves from the lower-right corner to
the steady and peak position below the cavity center.
This difference in movement of vortex center may be due to
the fact that at the initial stage of development for
high Reynolds number flows, the top and left walls have
1ittle effect on the development of primary vortex. It is
expected that this behavior would persist at higher
Reynolds numbers.

As mentioned before, the steady-state solution can
‘be obtained much more efficiently by relaxing the
convergence criterion at each time step and by employing
larger time increments in the numerical calculation.
On the other hand, a better-estimated initial profile
can reduce the computational time needed for calculating
steady-state solutions. A series of steady-state solutions
thus obtained are shown in Figures 20 thru 23 for Re =100,
400, 1000 and 2000 respectively. In all cases, the
first-order vorticity boundary condition (VII-#a) and
uniform meshs are used. A higher order correction term

of non-conservative form of

8
_5
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is employed in these calculations. C;, are TA coefficients
for steady convective transport equations. Considerable

saving in computational time are resulted in each case.

For example, the steady-state solution for Re = 1000 can

be obtained with a time increment of 0.4 for first 50 time
steps and a time increment of 0.5 for another 40 time
steps. The optimal time increment for fast, convergent
result can be determined easily by running the program

for a few time steps. It is noted that the shape of the
upper-right secondary vortex given in Fig. 23 for Re = 2000
differs slightly from those (see Fig. 16(i)) obtained with
a higher order correction term tabulated in conservative
form (V-5). This small discrepancy may be due to the
relatively coarse grid near the wall and non-conservative
higher order correction term used in Fig. 23.

Nevertheless, the global features of the numerical

results obtained by these two approachs (V-5) and (VII-7)

are still in good agreeﬁents for both Re = 1000 and 2000.

VII-2 Development of Vortex Street Behind a
Rectangular Block

In previous section, the 10-point FA formula for

unsteady two-dimensional convective transport equation is

employed to solve the starting cavity flow problems for

Reynolds numbers from 100 to 5000. The steady-state

|
|
|
|
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solutions agree well with most of the calculations obtained ?

i
.
3

by other researchers while the transient solutions are also
provided. Due to the lack of the reliable experimental

and other numerical or theoretical works, the accuracy

o . . A 100

of the transient solutions can not be rigorously verified. -
| It is thus desired to test the present FA formulation for
some other problems with comparable transient behaviors.
In this section, the development of vortex street behind
a rectangular block is chosen for this purpose.

For easy comparison with the results obtained by
Fromm & Harlow [51], a rectangular block of height L
and width L/4 as shown in Fig. 24 is chosen for the test.
A calculation domain of 26Lx6L is used to simulate the
infinite extent of the region. The Reynolds number 1is
defined by UOL/v, where Ug is the uniform oncoming
velocity. The block is located at a distance 2L from
upstream. A nonuniform grid of 0.5 (3 nodes), 0.25 (14
nodes), 0.5 (10 nodes) and 0.8 (20 nodes) is used in the
x-direction for the cases considered, while uniform grid
of 0.25 is used in the y-direction fcr Re =10, 50, 100
and 200, and a nonuniform grid of 0.5 (2 nodes), 0.125
(32 nodes) and 0.5 (2 nodes) is used for Re = 500.

From the experience obtained in solving the starting

cavity flow problems, first-order vorticity boundary

condition (VII-ta) derived from impermeable and no-slip
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boundary conditions is used along the boundary of the
rectangular block while the streamfunction is set zero on
the walls. As to the outer boundary, the boundary
conditions are specified as £=0, y=-3; §=0, =3

and £=0, y =y on bottom, top and upstream bourdary, while
downstream boundary conditions are specified as £x= 0

and y =0. For all calculations, a zero initial vorticity
field is specified at t=0, a time increment of 0.5 is used
for the first 40 (Re = 100, 200 and 500) or 60 (Re =10 and
50) time steps, after that the time increment is reduced
to 0.2 to obtain accurate transient solutions. The
convergence criterion at each time step is specified as

Ay < 10~° and Ag < 10™> for all field points between two

internal iterations.

From the present FA calculation, both steady and

unsteady separation flows behind the rectangular block
are predicted. It should be remarked that the boundary

conditions posed for the problem do not stipulate the

symmetry condition at the plane of geometric symmetry,
therefore the prediction does produce the asymmetric t

flow pattern such as vortex shedding phenomenon. It is

found that the flow pattern at the initial phase of flow
is symmetric, however, except for Re =10, the flow pattern

becomes asymmetric and oscillatory. For example, at Re =

500, the separation bulb (see Fig. 25) which is initially
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symmetric begins to show asymmetric pattern around t = 20
and eventually the FA calculation predicts vortex
shedding. This behavior is quite different from the
calculations made by Fromm & Harlow [511]. They reported
that an artificial perturbation on vorticity at 3 mesh
points just in front of the rectangular block is needed
to start the vortex shedding process. In order to clarify
this point, a stringent criterion of Ay < 10-8 and A < 10-6
is used to calculate the FA numerical solution for

Re = 500 for first 40 time steps to see if the vortex
shedding can be surpressed in the present calculation.
However, asymmetric flow pattern still occurs as that
shown in Fig. 25 at t = 20 although the symmetric pattern
persists a little longer. It is thus expected that even
if a very strict convergence criterion is used, the
computer round-off error would still be sufficient to
trigger the vortex shedding after a certain time and
destroy the initially developed symmetric pattern. In
this study, the effect of artificial perturbation is also
investigated for two selected cases of Re = 10 and 500 to
examine the difference it may bring. In the case of Re =
500, the vorticities at two points upstream of the

rectangular block are artificially increased by about

20% of its value at t = 20. In the subsequent time of

calculation, this vorticity disturbance convected

i~
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downstream while simltaneously diffused away. However,

the influence diminishes very rapidly. After. 20 time
increment of 0.2 at t = 24, the flow pattern as shown in
Fig. 26 is almost the same as the one obtained without
artificial disturbance. On the other hand, for the case
of Re=10 (Fig. 27), even if a large artificial vorficity
perturbation of about 80% of its value is introduced at
the same upstream nodes at t = 30, the steady-state
pattern recovered very soon in about 10 time steps or at
t = 35. In both cases, the artificial perturbation dies S
out in less than 20 time steps. Thus, the stability of
the finite analytic transient numerical solutions is
demonstrated. It is concluded that the ursteady flow
pattern of vortex street is an expected pattern for
high Reynolds numbers of 0(102) to 0(103), while the
symmetric flow pattern is only stable for low Reynolds
numbers.

A typical streamline pattern for vortex shedding
process can be seen clearly in Fig. 28 for Re = 100 where
the flow patterns are shown for every quarter period.
At t = 43.6, the upper eddy has accumulated sufficient
vorticity generated by the flow over the block and is
about to leave the rectangular block while the lower

eddy just begins to absorb the voeticity generated by

the flow over the lower side of the block. Quarter
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period later, the upper eddy leaves the block because the
eddy has grown sufficiently large in size to block the
flow on top of the rectangular block. As the upper eddy
moves downstream, the lower eddy continues to grow and
eventually forms a closed bulb. Around t = 46,8, the upper
eddy has already shedded downstream and the lower eddy
grows to its maximum strength and starts to leave the
block. In the meantime, the accumulation of vorticity at
the upper corﬁer leads to the birth of a second upper
eddy. The second upper eddy then continues to grow as
that shown in Fig. 28(d). At a later time of t = 50, the
second upper eddy reaches its maximum strength and

hbegins the next cycle of vortex shedding process. The
time period for this vortex shedding process 1is about
6.4. The corresponding Strouhal number is 0.156, which
agrees favorably with the experimental measurement [53]
of 0.165 based on a similar block with sharp edges.
Fufthermore, the streamlines pattern at t =u45.2 and 48.u4
(lagged by half period) exhibit a very similar pattern

as the experimental result shown in Prandtl €& Tietjens
[54] for Re = 250. Thus, the adequateness of the present
unsteady 10-point FA formula in predicting the unsteady
two-dimensional fluid flow problems is demonstrated. It is

noted that, due to the convection, the eddies are carried

downstream. Therefore, eddies other than relatively
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stationary one such as those immediately behind the block
can not be visualized on plot of streamlines. For example,
in streamline plots, there are only two closed separation
bulbs in Fig. 28(b) for t = 45.2, and even less closed
streamlines in Fig. 28(h) for t = 56.8 are observed.

In order to visualize the eddies that are convected
downstream, one may subtract the free stream velocity
from the streamlines configuration. The rest streamlines
thus obtained are equivalent to the stream pattern
observed by an observer on the rest ambient fluid when

a rectangular block moves with uniform velocity through
it. In Fig. 29, the downstream eddies can be easily seen
in the rest streamlines configurations after the vortex
shedding process ocCcurs. The corresponding vorticity
contours are shown in Fig. 29 for comparison. It is seen
that at each time step, the regions of high vorticity
concentration coincide with the center of eddies shown

in the corresponding rest streamlines patterns. One thus
may conclude that in the vortex shedding process, the
vorticity produced by the block is first accumulated in
the eddies formed behind the block and then carried
downstream by the eddies when they are shedded. The
vorticity is then diffused away rapidly. Similar vortex

shedding processes are also predicted in the cases of

Re = 50 and 200C. The streamlines, rest streamlines and
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vorticity contours are plotted in Figures 30 and 31 for ;
Re = 50 and 200 respectively. The corresponding Strouhal
numbers are 0.14 and 0.135, which also follow the correct ;
trend of the experiment [53] that gives approximately i
0.140 and 0.155 for Re = 50 and 200 respectively.

For a higher Reynolds number of 500, the FA solution
of streamlines is shown in Fig. 32. Which shows that
vortex are shedded alternatively. However, eddies are
not easy to observe from Fig. 32. Thus, the rest
streamlines are plotted in Fig. 33 to capture the vortex
shedding process. The vorticity contours shown in Fig. 34
exhibit a higher concentration and a slimer shape than
those obtained at lower Reynolds numbers. Experiments
of Blevins [53) show that the Strouhal numbers for various
non-circular section obstacles at high Reynolds numbers
1je between 0.12 and 0.16. In the present study, the
Strouhal number for Re = 500 is estimated to be about 0.13,
which agrees quite well with the experimental data [53]
although at higher Reynolds number of 500, the flow may
be in the transition region.

It should be remarked here that all of the calculations
performed in this section are based on relatively coarse
nonuniform grids (48x25 for Re =10, 50, 100, 200 and

48x37 for Re = 500) with fairly large time increments of

0.2 and 0.5. Yet accurate and stable solutions are
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obtained. On the other hand, the dimensionless time
increment used by Fromm & Harlow [51] is restricted to a
much smaller increment of about 0.03. Smith & Berbbia [52]
also used a small time increment of 0.03 for Re =100, and
even smaller time increments are needed for higher Reynolds
numbers. It should be remarked here also that coarser
grids may indeed be used in predicting FA solution for
Re = 500 if the calculation of FA coefficients for large
grid sizes that requires the summation of large exponential
functions can be made by the present computer facility.

As mentioned before, there is only one series summation
term E, (or Eé) needed to be evaluated numerically. In
most of the cases considered in Sections VII-1 and VII-2,
accurate FA coefficients can be obtained with 10 to 15
terms summation of Fourier series containing exponential
function, exp(s), of order s <100. However, for some
combinations of A, B, h and k, accurate series summation
of E, (or E%) can not be obtained (i.e., s >100) with
present generation of computer due to the computer
round-off error. Thus, large mesh sizes are not employ:.d
in the present calculation, so that the difficulty of
evaluating FA coefficients is avoided. Tt is possible to
replace F, or E! by some approximate analytic expression,

2 2

8o that all calculations of series summation can be

eliminated and the limitation in numerical evaluation of
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FA coefficients for large Ah, Bk etc. can then be removed.
In the preliminary study, an approximated expression of
eq(III-51) based on a collocation formulation is given in

Chen & Chen [55] for an equal grid spacing local element

of hE=hw=hN=hS=h as

.1 -Ah Ah -Bh Bh
¢P = :T__C [Gl(e ¢Ec+e ¢wc e ¢Nc+e ¢SC) +
T P
-Ah-Bh Ah-Bh -Ah+Bh Ah+Bh
G,y(e dyg te Pyw * € bspte s’
R n=-1
* T Cpop - Cpfy] (VII-8)
where
6. = Bh sinhAh coshBh - Ah sinhAh coshBh
1 2(Bh cosh’Bh sinhAh - A CoshAh sinhBh)
G = Ah_sinhBh - Bh sinhAh
2 4(Bh cosh’Bh sinhAh - AT cosh’Ah sinhBh)
and
C_ = coshAh - coshBh

P © 20Ah coshAnh cothAh - Bh -oshBh cothBRY

It should be remarked that even though eq(VII-8) is
only an approximate expression, the FA coefficients baged
on eq(VII-8) will recover the Greenspan formula [17] in
pure diffusion case (A=B=0) and approach the same

asymptotic values as those given in FA formula (ITI-51) for

the convective dominated cases. If eq(VII-8) is used in

-

o e e
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the calculation for FA coefficients of equal grid spacing,

the difficulty and restriction in evaluating E, (or Eé)

2
is then resolved.
At the time of writing this thesis, Cheng [56] has

proposed another approximation formula for the summation

term E2 as

2 )
1 Bk coshBk B h sinhAh,.
T, = [ A1 - == ) I
2 4 ABh’sinhBk coshAh sinhBk coshAh
sinhulk
YIS (VII-9)
1 Hy
where
ul=/lA2+32+(§%)2

Therefore, the difficuly and restriction in evaluating
E, for uniform and nonuniform grid spacing local elements
can be approximately circumvented. Currently, further
study in evaluating E, without a series summation
applicable to nonuniform grid spacing local element is

under investigation.

VII-3 Two-Dimensional Starting Cavity Flow in
Primitive Variable Formulation

As mentioned earlier in Chapter V, the

vorticity-streamfunction formulation suffers from some

disadvantages when applied to turbulent or 3D fluid

R WP
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flow problems. Thus, a formulation using the so-called
primitive variables, i.e., velocities and pressure becomes

attractive for these complicate fluid flow problems.

However, additional efforts should be devoted to resolve

the pressure-velocity coupling one way or another. In past
two decades, several numerical schemes [22-28]), which are
capable of solving the pressure-velocity coupling problem
were developed. Again, the driven cavity flow problem is
often chosen to test these numerical schemes.

Ghia, Hankey & Hodge [47] employed a totally central
difference scheme to solve the driven cavity flow in
primitive variable formulation. In order to avoid the
nonlinear instability resulted from the pressure-velocity
coupling, the dilatation term in Possion equation (V-6)
for pressure is kept. The numerical solutions for Re = 100,
400 and 1000 were obtained by both uniform and nonuniform
grids ranging from 15x15 to 57x57. Goda [25] employed a
numerical algorithm based on a simple variant of Chorin
method [23] to solve the two-dimensional driven cavity
flow in terms of primitive variables. The central
difference scheme was used to discretize the governing
equations in a staggered grid coordinate system. An
auxillary velocity field introduced by Chorin [23] was

invoked to resolve the pressure~velocity coupling problem.

Rather complicate boundary conditions for pressure and

ot
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auxillary velocity field are needed to keep the numerical
accuracy. Bercovier & Engleman [48] used a finite element
method ofbpenalization type to solve the two~dimensional
cavity flow problem. In their calculations, rather coarse
grid were used to obtain the numerical solution for Re =0,
100, 400 and 1000, The results exhibit the same features
as those obtained by Ghia et al. [47] and Goda [25],
However, oscillations in velocity field were encountered
near the wall. Singh [22] employed the finite analytic
method developed by Chen et al. [5,6] to solve the same
problem for Re = 100, 400 and 800. A momentum-averaging
scheme is used to resolve the pressure-velocity coupling,
so that a continuity-satisfied velocity field can be
obtained.

In the present calculation of FA solution, the
starting cavity flows for Re = 100, 400 and 1000 are
solved in a staggered grid coordinate system using uniform
meshs ranging from 21x21 to 4lx4l. In order to apply the
no~slip boundary conditions exactly on the moving and
stationary walls, control volumes of zero thickness are
chosen along the wall (see Fig. 8). The 10-point FA formula
for unsteady two-~dimensional convective transport equation
based on nonuniform grid local element is employed to

discretize the momentum equations. A pseudovelocity field 3

described in eq(V-9) of Section V-2 is then introduced
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so that the pressure field can be obtained via the equation
of continuity. The guessed flow field is corrected by
velocity-correction formulas (V-1ka) - (V«llc) to obtain A
a continuity-satisfied flow field [11]. Detailed numerical
procedures are given previously in Section V-2.

In order to obtain the steady~-state solutions more i
rapidly, the convergence criterion for intermediate time
steps are relaxed. Furthermore, the convection coefficients
2A and 2B are evaluated in terms of the velocities of
previous time steps, so that the computational time needed
can be minimized. In all calculations, zero initial
velocity field is specified at the beginning, time
increments ranging from 0.1 to 0.6 are used to obtain
the steady-state solutions.

In the present algorithm, the velocity field governed
by equations (III-23) and (III-24) satisfies the equation
of continuity (III-22) at each iteration or each time step
after employing the velocity-correction formulas (V-1lbta) -
(V-14c). Thus, the corresponding streamfunction can be
easily obtained by simple integration of the velocity
field along suitable paths. In this study, the streamfunction
at any field point is obtained by integrating the
horizontal velocity u along constant x lines. The steady

streamfurctions thus obtained are shown in Fig. 35 for

Re = 100, 400 and 1000 respectively. The results shown in
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Figs. 35(a) thru 35(d) agree well with those FA solutions
obtained by the vorticity-streamfunction formluation
given in Figures 12, 14, 20 and 21. The magnitude and
direction of the velocity field are shown in Figs 36(a)
thru 36(d) in terms of flow vectors for Re = 100, 400 and
1000 respectively. It can be seen that the vortex center
moves gradually toward the geometric center as Reynoldé
number increases. Moreover, the velocity field obtained
in the 21x21 or 41x41 uniform grids for Re = 1000 in Tigs.
36(c) or 36(d) shows a boundary layer phenomenon near

the top wall. It is also noted that, unlike the
vorticity-streamfunction formulation, the sizes of the
secondary vortices are relatively insensitive to the

mesh size used in the primitive variable formulation.
This is due to the fact that the no-slip and impermeable
boundary conditions are exactly satisfied in the primitive
variable formulation, while the vorticity boundary
conditions are strcngly dependent on the grid sizes
employed near the wall. In additional to the streamlines
and flow vector profiles, the pressure field which is not
calculated in vorticity-streamfunction formulation is
given in Fig. 37. The results are also in good agreement

with those obtained by Burggraf [31], Singh [22] and Ghia

et al. [u7].
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In this study, the FA numerical solutions based on
nonuniform grids are also obtained for Re = 400 and 1000.
In general, some improvement of numerical results are
anticipated when computed in nonuniform grids. However,
negligible improvement is found in using nonuniform grids
when same numbers of total grid points are employed. 0One
may wonder why the calculation with nonuniform grids does
not differ from that with uniform grids; one possible
reason may be due to the loss of accuracy in the evaluation
of pressure gradient terms which should be encountered
for all numerical schemes formulated in staggered grids
when nonuniform grids are used. It can be seen from
eq(V-8a) that the pressure gradient term is only
first-order accurate if the point e is not located at the
midway of point EC and point P. The attempt to obtain a
second-order accurate representation of pressure gradient
term would lead to more complicate governing equation
for pressure and thus offset the advantages gained in
using nonuniform grids. In future study, it is proposed,
when situations allow, to use the regular grid instead of
the staggered grid coordinate system, so that the pressure

gradient which forms a part of the source term for a

momentum equation can be accurately evaluated.
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CHAPTER VIII

EXAMPLES OF THREE-DIMENSIONAL
FLUID FLOW PROBLEMS

In this chapter, the 28-point FA formula’for unsteady
three-dimensional convective transport equation is employed
to solve a simple three-dimensional cavity flow driven by
a moving wall. Due to its simple geometry and boundary
conditions, the three-dimensional cavity flow is often
chosen to test the new numerical schemes for steady or
unsteady Navier-Stokes equations. Takami & Kuwahara [26]
employed a modified Chorin method [23] but using the
acceleration instead of velocity field as the dependent
variable to solve the three-dimensional cavity flow
protlem for Re =0, 100 and 400. All of the results are
calculated in a staggered grid coordinate system using
mesh size of 0.05. Small time increment of 0.025 is used (

for Re = 100 and 400 while a smaller time increment of

0.02 is used for Re = 0. Goda [25] used a technique which
is also based on a simple variant of Chorin's method

to solve the same cavity flow problem for Re =100 and
400. The numerical solutions are obtained in a staggered

grid coordinate system of equal grid size of 0.05. The

results in general agree with those reported by Takami &
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Kuwabira [26]. In both cases, the pressure field is solved
directly via the equation of continuity, thus only four
equations are needed to obtain the velocity and pressure
fields. On the other hand, the vorticity-based formulations
may also be employed. For example, Vahl Davis & Mallinson
[32] used the vorticity-vector potential formulation to
solve the three-dimensional cavity flow problem at Re =
100 and 400 for aspect ratio ranging from 1 to 5 to
study the effect of three-dimensionality on the
two-dimensional model. Dennis et. al [21] employed a
vorticity-velocity formulation to study the cubic cavity
flow problem up to Reynolds number of 100, but the
attempt for Re = 400 was not succeeded. Agarawal [57]
used the same vorticity-velocity formulation, but instead
of diagonal dominated second-order finite difference
scheme, a third-order accurate upwind scheme is employed
to solve the steady cavity flow problem for Re = 0, 100
and 400. Three different mesh sizes of 0.1, 0.0625 and
0.05 were used to obtain the numerical solutions. The
results agree quite well with those reported by Takami &
Kuwahara [26] and Goda [25].

In the present study, the primitive variable
formulation described in Section V-2 is adopted to

formulate the three-dimensional starting cavity flow

problems in terms of u, v, w and p. The cubic cavity of
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unit length shown in Fig. 38 is driven by the bottom wall
with unit normalized velocity in the positive x-direction.
Because of the symmetry with respect to the plane y = 0.5,
only half of the flow domain needed to be considered. The
flow domain is divided into many rectangular control
volumes and a staggered grid arrangement described in
Section V-2 is employed. In other word, the pressure is
calculated at the center of the control volume, while the
velocities u, v and w are calculated at staggered locations
across the control surfaces. Furthermore, control volumes
of zero thickness are chosen along the Qall, so that the
no-slip condition can also be applied exactly on the
moving and stationary walls. Symmetric boundary conditions
at y=0.5 are satisfied by equating the velocities u and
w at plane y=% (1 + Ay) to those at plane y=—]2L (1~ Ay).
The boundary condition for pressure is not needed since
pressure is needed only to compute velocity but the
impermeable boundary conditions prescribe the zero normal
velocities already on the boundaries.

Following the numerical procedures described in
Sec. V-2, the starting cavity flows of Reynolds numbers
of 100 and 400 are solved using uniform mesh sizes of
ax = Ay = 82 =0.1 and Ax = Az = 0.0625, Ay = 0.125 respectively.

Due to the limited computer storage available, no attempt

was made to calculate the results in finer mesh sizes
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or higher Reynolds numbers. A time increment of 0.3 is H

used in both cases, while the steady-state solutions are
achieved in 50 time steps. ; !
The steady-state x-component velocity profiles on the

plane x=0.5 are shown in Figs. 39(a) and 39(b) for Re = g 3

100 and 400. The results in general agree well with g

those obtained by Goda [25], Takami & Kuwahara L26] and

o e ek s ok B I 5 E

Agarwal [57], even though coarser grids of 0.1 and 0.0625 :

are used in the present study. For the case of Re =100,

e

the x-component velocity profile at central part y =0.45
is almost two-dimensional. However, the maximum velocity
in y-direction, which occurs near the vortex center in

xz plane, still has a magnitude of 0.025. As the Reynolds é
number increases to 400, the magnitude of the secondary |
flow increases, and the x-component velocity profile i
at y = 0.4375 differs significantly from that at y =0.3125.
It indicates that the effect of the side walls at y=0 ;
and y =1 on the total flow becomes important, and the %
flow pattern at y =0.5 thus differs significantly from

the two-dimensional pattern at the same Reynolds number.
The finite analytic solution also agrees well with the

study of Vahl Davis & Mallinson [32], where the effect

I R T

of side walls at different aspect ratio is reported.

Since the scalar streamfunction does not exist in

three-dimensional flows, it is better to examine the
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flow structure in the xz plane by means of the flow

vectors so that a comparison with two-dimensional cavity

flow can be meaningfully made. Figs. 40 and 41 show the
profiles of flow vectors in the plane y’:%uAy and y =

% (1 -~ Ay) for Reynolds numbers of 100 and 400 respectively.
It can be seen that the magnitude of the flow vectors

at y==% Ay is greatly affected by the presence of the side
walls in deirection and the locations of the vortex
centers are closer to the moving wall than those at y =

% (1 -4y). In additional to the profiles of flow vectors,
the corresponding magnitude of the velocity components

u and w at y =%-Ay and %-(1.-Ay) for Reynolds number 400
are shown in Figures 42 and 43 respectively. However, the
flow direction and magnitude can only be completely
described until the velocity normal to xz plane is
prescribed. Thus, the secondary flow for Re = 400 in
y-direction is given in Figs. 44(a) thru 44(c). It can be
seen that there is a tendency for the flow around the ‘
vortex center to go toward the center of the cubic cavity.
On the other hand, except for part of the right wall,

the flow near the boundaries goes toward the side walls

at y=0 and y =1. All of the velocity contours agree

fairly well with those obtained by Agarwal [57] and

Goda [25].
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; Due to the limited computer storage presently f
é available at the University of Iowa computer center, no

3 attempt was made to calculate the numerical results for
Reynolds numbers higher than 400. However, from the
finite analytic numerical solutions for Re = 100 and 400,

' it may still be concluded that the pressure gradient in

y-direction and the secondary flow increase with
increasing Reynolds number. Thus results in a significant
reduction of the strength of primary vortex when
compared with two-dimensional cases. Therefore, if one

desire to obtain an approximately two-dimensional cavity

e e B b At AR R 10 b e K A

flow experimentally or numerically from a three-dimensional
set up, it is suggested that the aspect ratio of the
three-dimensional cavity should increase with increasing
Reynold numbers so that the two-dimensional assumption

can be insured. However, viscous effect of the side walls
may decrease for very large Reynolds numbers .

It should be remarked here that in cited previous
works, relatively small time increments were needed for
most of the unsteady numerical schemes so that stable
numerical solutions can be obtained. For example, the
time increment used by Goda [25] is restricted by

1'<h/|u Even smaller time increments of 0.02 and

maxl' ?

0.025 are used in Takami & Kuwahara [26] in solving

three-dimensional cavity flow problems. On the other hand,




A e W e T AR %

ORIGINAL PAGE 19 166
OF POOR QUALITY

a large time increment of 0.3 was used in the finite
a ; analytic method, while even larger time increment is
still possible. Thus, the stability of the present FA
method is also established in the three-dimensional
calculation. Moreover, the fact that the 28-point FA
formula provides all-positive coefficients and desired 'i
upwind shift gurantees that physical realistic numerical

solution with minimum false numerical diffusion can be

obtained as long as the problem is well-posed. There is,

however, some improvements can still be made in the

present TA method. Tt is noted that the use of staggered

grid coordinate requires three sets of FA coefficients

for u, v and w respectively and the evaluation of

pressure gradient is only of first-order accuracy when

nonuniform mesh is employed. The use of regular grid

instead of staggered can not only reduce the computer

storage and computational time needed but also provide

accurate higher order evaluation of pressure gradient

terms. It is also noted that there are four series f?
summation terms needed to be evaluated numerically. For

high Reynolds numbers, the evaluation of these summation

terms could be very time-consuming or even diverged due

to the round-off error in the present day computers. If

the series summation terms are replaced by some

approximation functions, then the limitation in evaluating
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FA coefficients can be removed. Also, the computational }

time is significantly reduced. '
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CHAPTER IX

CONCLUSIONS

The finite analytic solutions for unsteady 1D, 2D
and 3D convective transport equations are derived in both
uniform and nonuniform grid spacing local elements. When
the present finite analytic solution is compared with the
finite analytic solution obtained by Chen et al. [5,6]

for steady two-dimensional case, significant improvements

are seen due to the better boundary approximations and the
better linearization scheme for convective terms. The
improved 10-point FA formula for unsteady two-dimensional
convective transport equation is employed to study the
two;dimensional starting cavity flows and vortex shedding
processes behind a rectangular block. The finite analytic
numerical solutions for the driven cavit& flow are obtained

using both vorticity-streamfunction and primitive variable

formulations. In vorticity-streamfunction formulation,

contour plots of streamfunction and vorticity at

steady-state are provided for Reynolds number of 100, 400,
1000, 2000 and 5000. Transient solutions of the starting
cavity flow are also given in the cases of Re = 1000, 2000

and 5000. In primitive variable formulation, the b
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streamlines, pressure contours and flow vector profiles
are plotted for Re = 100, 400 and 1000. The results agree
well with those obtained in vorticity-streamfunction
formulation. The vortex shedding phenomenon is then
studied by investigating the transient solutions of uniform
flow passing a rectangular block of height L and width
L/4. The numerical solutions for streamlines and vorticity
contours are given for Reynolds numbers of 10, 50, 100,
200 and 500. Except for Re = 10, vortex street developments
are observed. The flow patterns and the corresponding
Strouhél numbers obtained from finite analytic method
are consistent with theoretical and experimental studies.

In three-dimensional case, the 28-point FA formula
formulated in terms of the primitive variables is employed
to solve a three-dimensional cubic cavity flow problem.
Flow vector profiles and contour plots of velocities at
several cross-sections are given. The numerical solutions
show that the presence of the side walls reduce the
strength of the primary vortex when compared with the
two-dimensional square cavity flow. Furthermore, this
effect becomes significant for Reynolds nu: ber of u400.

In all of the test problems considered, the finite
analytic numerical solutions are shown to be accurate and
stable. Significant results arc summarized in the

following.
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In steady two-dimensional case, the FA solution
based on exponential and linear boundary approxima-
tions does give all-positive FA coefficients, which
is more reasonable and requires less computational
time than those obtained by Chen etal. [5,61]. Thus,
the extension to unsteady three-dimensional cases
becomes practical.

The 28-point FA formula for unsteady 3D convective
transport equation derived in a nonuniform grid
spacing local element gives physically realistic
all-positive coefficients and exhibits a desired
upwind shift. Furthermore, the false numerical
diffusion is minimized because of the inclusion of
all corner points.

Higher order corrections for the convective terms
in Navier-Stokes equations are considered in this
dissertation. It significantly improves the
linearization scheme and the accuracy of the FA
solutions.

The equivalent under-relaxation factor for
steady-state iterative method can be derived from
the FA solution for unsteady flow. It is found that
the under-relaxation factor for steady Navier-Stoles

equations varies from element to element, and make

the FA numerical solution more stable than the
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solution obtained with constant under-relaxation
factor in the steady~state iterative method. !
(5) For unsteady fluid Zlow problems, large time incre-

ment that is several times of mesh size can be often

|

|

used to obtain the FA solution for transient %
problems. Even larger time increments can be employed 3
in the FA method to calculate steady problems. Thus, %
the stability and computational efficiency of the |
present FA method is demonstrated.

There are, however, still some improvements in the

present FA method that can be made in future study. Firstly,

the series summation terms required in evaluating the FA

coefficients can be replaced by some approximation functions

so that the limitation in numerical evaluation of FA

coefficients can be removed, and the computational time

can be further reduced. Secondly, for convection dominated

cases where the downstream FA coefficients are practically

zero, it is possible to improve the accuracy in these cases

by taking more upstrear nodal points into account in

deriving the FA coefficients. Thirdly, for problems where

recirculating flows occur in only part of the domain, it

is instructive to incorporate the simple exponential scheme

or power-law scheme [11] in the finite analytic formulation,

89 that the accurate solutions can be obtained more

economically.
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=§l§; | an| 1077 10?7 107} 1 10 102 108 5
Cyy| 0-5000 0.4975 0.4722 0.2566 0.0488 0.0050 10”8
Cyp| 0-5000 0.4876 o0.3866 0.0347 107'° 107%7 0 \
Cue| 1077 0.0100 0.1005 0.5997 0.9040 0.9900 1.000
v ol 1077 0.0088 0.0823 0.0812 107°  107% o
F Cqy| ~107% -0.0025 -0.0229 -0.0053 o0.0u49 0.0050 107°
] Car -10"%  _0.0024 -0.0187 -0.0013 -0.0006 -10"1% ,
Coe| O 10717 10711 0.03us o0.0028 107 ¢

Table (1) FA coefficients for unsteady 1D convective
transport equation with second-order polynomial
initial and boundary approximation for Courant
number C. =1

0

Ah | 10”7 107?107t 1 10 102 10°

Cyy | 0-1093 0.1104 0.1206 0.2566 0.8555 0.9851 1.000

Cyp| 0.1093 0.1082 0.0988 o0.0387 107°  107%7 o

Cyc| 0-3251 0.3284 0.3579 0.5997 '0.1890 0.0199 107° |
Cpo| 0.3251 0.3219 0.2930 o0.0812 107'0 107%% o !
Cqy| 0.0218 0.0220 0.0237 -0.0053 -0.0445 -0.0495 107" ?
Cqp| 0.0218 0.0216 0.0194 -0.0013 -20720 _1078% o

Coo| 0-0875 0.0875 0.0867 0.03s  107' o 0

Table (2) FA coefficients for unsteady 1D convective
transport equation with second-order polygomial
initial and boundary approximation for Bh¢/2t=]

C -3 |
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{
AR | 0.001  0.01 0.1 1 10 100 |
Cyc| 0:27215 0.27461 0.20958 0.55647 0.95000 0.99500 |
Cpe| 0.27160 0.26917 0.24527 0.07531 10°9 10”87 \
Cqy| 0-1845% 0.18620 0.20260 0.29523 0.05000 0.00500)
Cqo| 0.08752 0.08751 0.08667 0.03303 10743 0
L Cop| 0.18417 0.18251 0.16588 0.03996 10710 10788

Table (3) FA coefficients for unsteady 1D convective
transport equation with exponential and linear
initial approximation and linear boundary
approximationsfor'Bh2/21 = .5

BhZ/2t|  Cye Cec Csw Csc CsE
o | 1.000000 10°** 10~8 0 10-52
10 | 0.s00000 10°*%  0.200000 10738 gt
20 | 0.s00000 107** o.wooooo 1073 107*¥
50 | 0.400003 10°%* 0.s99991 0.000005 10™'°
se | 0.203003 10°%% 0.7932us  ©0.003754 10°°"
so | 0.056150 10°%5 0.887717 0.056141 10™ "
60 | 0.007097 107" 0.s20323 0.172581 10™""
70 | 0.003887 10°"® 0.707623 0.288491 107"

Table (4) FA cuefficients for unsteady 1D convective
transport equation with exponential and linear

-4 initial approximation and linear boundary

- approximations for Ah = 50
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(NC

1.000000

0.833333 0.166667
0,71u4286 0.28571u
0.625000 0.375000
0.555546 o.uhyyyy
0.%00000 A 0.5%500000
Q. 58544 , 0.545455

O.ulbbb? 0.583334

e a— —

Table (5) TA coetfficients for unsteady 1D
convect ive transport equation with
hybrid FA tormulation for Ah = 50

FAEL FASP FAPL

——d

0.20531 0.20531 0.1623u

GC.0uuuY 0.0u4ub69 0.08768

bo e e ——

Table (6) Comparison of FA coefficients for Laplace
equation (A =R =0) inan equal grid spacing

local clement of h!‘. s hw z hN z hs = h
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t FACL FASP FAPL
Coy 0.52286 0.43650 0.52927
Cwe = Cse 0.23854 0.32490 0.23212 '
Cyw * CsE 0.00322 0.00002 0.00323
Cee * Che 0.00001  «0.N4316 0.00001 ‘
Cug 1079 ~10"° 107

- v - g

Table (7) Comparison of FA coefficients for steady
2D convective transport equation in an

equal grid spacing local element of th

hy =hy =hg=h for Ah=Bh=5 i

W
: FAEL FASP FAPL
Cyc 0.9800 0.3800 0.8874
Cyy = Cgy|  0-0100 0.0100 0.0563
Cye = Cge| 107H 0 10”11
Cyp = Cgp| 107 0 10°2%
Ce 10°4" 0 10-""

Table (8) Comparison of FA coefficients for steady
2D convective transport equation in an
equal grid spacing local element of hg =

=hs=h for Ah= 50, Bh=0 '

hw z hN
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FAEL FASP FAPL
Coy 0.49969 0.38704 0.49350
Coc 0.00020 0.00038 0.00035
Cor 1074% 107" 10738
Cuc 0.50010 0.72522 0.50013
Cec 10744 107"3 10740
Cr 10722 ~0.11256 0.00001
Cye 10°26 107" 10723
Cyp 10766 1072° 10735

Table (9) Comparison of FA coefficients for steady
2D convective transport equation in a

local element of hr'zhw
Ah = 50, Bh =25

-

—

=h,=h.=h for

N

h/k 1 2 S
CF.C = ch 0.20521 0.04u451 0.000u40
CNC = CSC 0.20531 0.38613 0.48002
CNF? = CNW 0.0uu469 0.03u468 0.00979
CSE = CSW 0.0uu469 0.03u468 0.00979
Table (10) FA coefficients for Laplace equation (A=B

= 0) in a local

hN=hS:k

element of h

X

=hw=h and

e v e e A b a7 s <
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h/k 1 2 5 10
Coy| - 030845 0.32953  ©.18648  0.09466
Cec 0.33396 0.55522 0.79314 0.88735
Cgp| 0.00s65  0.00011 10710 10718
C 0.33396 0.09891 0.00244 107°
WC .
Cpo| 0.00612  0.00003 10”11 10-22
Cow 0.00565 0.00604 0.00342 0.00173
Cye 0.00612 0.01017 0.01453 0.01625
-6 -11 -20
CyE 0.00010 10 10 10
Table (11) FA coefficients for steady 2D convective 3
transport equation with exponential and
linear boundary approximation in a local
element of hE = hw = h, hN = hS =k=0.1 and
A=B=20
Rh?/ ¢ [0.00001 0.1 1 10 1000
C&y |0.52282 0.52246 0.48587 0.29685 0.00678
Che = C&c|0.23853 0.23673 0.22166 0.13543 0.00309
Chw = C4g|0.00002 0.00002 0.00002 0.00002 1077
Chc = Cpc [0-00001  0.00001 0.00001 0.00001 10~
Chp 10-9 1072 1072 10°° 10711
ch 0.060001 0.00756 Q.0707S 0.43226 0.38704

Table (12) FA coefficients for unsteady 2D convective
transport equation with exponential and linear
boundary approximations (h =k, Ah=Bh=5)
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Ch 0 R 10 100
Che 0.11363 0.25008 0.81127 0.98010
’ \
é Cron*Cuen=CsenCyca| ©-023% 0.04966 0.04380 0.00495
&
~ = = = 5
= Capp*CoupCnrpCrun| 00038 0.00780 0.00257 0.00003
i i i . -16
Cre = Cye = One = Cse 0.11363 0.09419 0.00072 10
- - - ‘17
‘ ey O™ Csre=Cawe | 00239 0.01960 0.00008 10
\
| - - - n -10 -89
% Coop*Cuor=Cror=Caer| 00239 0.00672 10 10
i o 20 2Camm=C 0.00386 0.00106 10"} 10792 |
NETS Onwt ™ CsRTT CSWT ' ' ’ 1
Crc 0.11363 0.03384 10°° 10”87 ;

Table (13) FA coefficients for steady 3D convective
transport equation in a local element of
equal grid spacing hp = hy = h, = ho = h,=hg=h
with Ah = Bh = 0 FEOWomTUs TR

|
i
4
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g Bh = Ch 0 1 10 20 50 f \

j Cscp 0.0239 0.104% 0.5981 0.7181 0.8246 é

fi Cxer 0.0233 0.0010 10°1% 107  q107¥ %

% Cuc = Cse 0.1136 0.2106 0.1596 0.1191 0.0785 i

. Cye = Cre 0.1136 0.0285 1071Y 10718 o7M®

f Cee = Cye 0.1136 0.0793 0.0001 10”7 1078

Cren=CSET 0.0239 o0.0181 1077  107% qo~""

} Copn*Coun 0.0039 0.0160 0.0775 0.0167 0.0080

% Cypr* CNWT 0.003¢ o0.0003 107'% 107 107"

1 Cron*Cycn*Capc=Coyc | 0+0779 0.0413 0.0089 0.0026 0.0006

: Cypp*CawpCspr=Cswr| 00039 0.0022 10710 1719 q07t®
Cype®Crer Cawe=Cwer | 0-0239  0.0086 1071 10770 y07Y

Table (14) FA coefficients for steady 3D convective
transport equation in an equal grid spacing
local element with Ah =0




180

: ORIGINAL PAGE g
b OF POOR QuALITY
k|
Ah = Rh = Ch 0 ¥ " 30
Csw; 0.003862 0.255536  0.533682
Coop=CucnCsye | ©0-023393  0.163756  0.127785
CapaCaynCsyr| 0-003862  0.000012 10710
Cqe * Oye = Cge | 0-113631  0.08uBE8  0.025654
CapesCpwe=Csep | 0-023943  0.000007 10-1¢8
CWCT:CRCB:CNCR. 0.023943  0.000007 TR
-9 -3%
Cypn=Capp=Cngr| 0-003862 10 10
Cro® Uae * Upe | 0113631 0.00000 10719
CnpeCrersOnerp | 0-0239u3 10710 10736
B NPT 0.003g62  10”1Y 107%°

Table (15) FA coefficients for steady 3D convective
transport equation in an equal grid spacing

local element of hE s hw = hN = hS = hT = hB = h




| wggg
:
3

ORIGINAL PAGE 1S 181
OF POOR QUALITY
e -
x 0.2 o.u 0.6 0.8 1
Exact |t » » 0.800000 0.600006 0.400000 0.200000 ":r«
t = 1 0.755968 vE;SQQQJB 0?399952 0.199972 O \
FASP |t = 21 0.800016 0.600026 0.400024 0,200014 O
i t 231 0.800000 0.600000 0.400000 0.200000 O
i FAEL &t = < 0.799953 6.5959?5 ko.3999u5 0.199969 0O
};xbrid t 221 0.800000 0.600000 0.400000 0.200000 O
‘ . —
Table (16) large time solutions for linear 1D cqnvective
| transport equation. c =0 (heat equation),
a=0.01 and 1 =1000
X 0.2 0.u 0.6 0.8 1
Exact |t +» = 1.000000 1.000000 1.000000 1.000000 O
t = 1 1.000000 0.999900 0.999800 0.999700 O
FASP |t =21 1.000000 1.000050 1.000100 1.000149 O
t 231 1.000000 1.000000 1.000000 1.000000 O
FAFL &)t = 1 1.000000 0.999900 0.999800 0.999600 O
';Zb“id t>21 1.000000 1.000000 1.000000 1.000000 O

Table (17) Large time solutions for linear 1D convective
transport equation. ¢=1, a=0.001, h=0.2
and t = 2000 '

N
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X 0 0.2 0.4 0.6 0.8 1
Exact [t » = 1 0,999710 0.997567 0,981729 0.864704 0
t = 1|1 0,999686 0.997544 0.981516 0.864451 O
t=2t| 1 0.999721 0.997624 0.381835 0.864830 O
FASP | :

t=3t| 1 0.999710 0.997566 0,981729 0.864704 O
t>4t| 1 0.999710 0.997566 0,981728 0.864704 O
FAEL €|t = t]| 1 0.999610 0.997368 0.981842 0.864385 0
?Xbpid t221{ 1 0.999710 0.997567 0.981729 0.864704 O

Table (18) Large time solutions for linear 1D convective

transport equation. c=1, a=0.01, h=0.2
and T = 2000
i X 0 0.4 0.6 0.8 0.9 1
e/ o 1900 46.34 31.15 23.46 20.88 18.8

Exact [t » = 1 0.999992 0.999798 0.987886 0.875720 O
t = t| 1 0.,999996 0.999957 0.988787 0.879743 O
FASP [t =27| 1 1.000002 0.999973 0.988814 0.879772 0
t237| 1 1.000000 0.999968 0.988804% 0.879762 0
FAEL &t = | 1 0.999995 0.999956 0.388785 0.879741 0
?Xbrid t221] 1 1.000000 0,999967 0.988804 (.879761 O

Table (19) Large time solutions for linear 1D convective
transport equation. c/a=19/(x+0.01), h=0.)

and t =1000
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Figure 1 : Domain and local element for finite analytic

formulations of unsteady three-dimensional
convective transport equation.
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Figure 4 : Local elements of uniform and nonunifomm
grid spacing for two-dimensional
convective transport equation.
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Figure 7 : Local element and control volume surrounding
nodal point P.
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Figure 8 : Staggered grid coordinate system.
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for two-dimensional starting cavity
flow.
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Figure 24 : Coordinate and boundary conditions for
vortex street development problem.
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Figure 29 : Rest streamlines and vorticity contours
for vortex street development process
of Re=100. Ay =0.1, A£=0.5.
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Figure 30 : Streamlines, rest streamlines and vorticity
contours for vortex street development
process of Re = 50. Ap=0.1, Af =0.5.
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Figure 31 : Streamlines, rest streamlines and vorticity
contours for vortex street development
process of Re = 200. Ay =0.1, AE=0.5.
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(f) Vorticity contours at t = 46.6
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Figure 32 : Streamlines for vortex street development
process of Re = 500. Ay =0.1.
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APPENDIX A

FINITE ANALYTIC FORMULATION OF
UNSTEADY ONE-DIMENSIONAL
CONVECTIVE TRANSPORT EQUATION

Depending on boundary and initial functions selected
to approximate the boundary and initial conditions for the
chosen local element, several local analytic solutions of

the unsteady linear or linearized one-dimensional convective

transpoert equation
dex = 2Ad, * Boy (A-1)

can be obtained. In this appendix, three FA solutions are
derived in detail to illustrate the basic idea of the FA
method. Three solutions of eq(A-1) are distinguished by
the following formulations

(1) Eq(A-1) is solved with second-order polynomial
'; approximation for both initial and boundary

functions

- 2

¢(x,0) = ag * bgx + c_x

(-h,t)= a, + b,t + ¢ t2
LA W ow W

- 2

¢(h,t) = ap + bEt + cpt

P STy e

1
{
]
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(2) Eq(A-1) is solved with exponential and linear
approximation for initial function, and linear

approximation for boundary functions.

2Ax

$(x,0) = aS(e -1) + bgx + cg

¢(-h,t)= a, + bt

¢(h,t) = ap + bpt

(3) Eq(A-1) is solved with the unsteady term approxi-
mated by finite difference formula. This is a
hybriéd FA-FD formula.

Details of three solutions are given below:

A-1 Second-Order Polynomial Approximation for Initial and
Boundary functions

In this case, the linear or linearized convective
transport equation (A-1) is solved in the local element
shown in Fig. 2(b).

For the convective transport equation (A-1) to be
well-posed, an initial and two boundary conditions must be
specified along the south, west and east boundaries
respectively. In terms of the nodal points available on
each boundary, second-order polynomials are employed to

approximate both the initial and boundary conditions, i.e.,
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E; { ¢(x,0) = as + bsx + csx (A-1la)
E ¢(-h,t)= a, + bt + c t2 (A-1Db)
& ’ W W W - X
E«; ¢(h’t) = aE + bEt + cEt2 (A-1c)
E where
] ) 1
= ag = ¢gcs  bg = 3y (égp - ogy)
) Ca ° 1 (¢ + 9 - 2¢.4)

S ;;7 SE SW SC

) !

ay = bgys by T oar (e - 3dgy - Gyy)

Cy, = 1 (¢ + ¢ - 2 )

we 77 et e

a. = ¢ bo = Ao (W = 3o = Gye)

E - ¥sp° E 27 EC SE NE

e s o (he t bl - 260.)

E ;:7 SE NE EC
i With the introuction of a change of variable
. 2

A
- t
¢ = w eAX - § (A=2)

The convective transport equation(A-1), initial condition
(A-la) and boundary conditions (A-1b) and (A-lc) are

transformed to

) : Bw (A-3)

2
wix,0) = e (as + bgx + cgx ) = QI(x) (A-3a)
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2

A
_ _Ah + t
w(=-h,t) = e B (aw + bw

t?) = o (t) (A-3b)

+
Tty

2

-Ah + g— t (ag + byt + ¢ ) 6E(t) (A-3c)

w(h,t) = e E E

Under the method of superposition for linear equation
(A-2), this problem can be solved analytically by further

dividing it into two simpler problems

(A-4)

with w, satisfies the homogeneous boundary conditions and
W, satisfies the zero initial condtion in the following

manner

wz(x,o) =0

wz(-h,t)= .w(t)

wz(h,t) z QE(t)
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The sclution for W, can be easily obtained by the
method of separation of vlriables. Assuming wy; = X(X)T(t),
and substituting Wy into eq(A-5), the variables are

separated.

" ]
% = B-%— = constant = _AZ

The two resulting ordinary differential equations are

2

X"+ A'X =0 (A-7)
2
T' + %T T = 0 (A-8)

and the boundary conditions (A-5b) and (A-5¢) are trans-

formed to

X(-h) = 0
(A-9)
X(h) =0

The two boundary conditions (A-9) can be used to find

the eigenvalues Ap i.e.,

X = a, 51nxn(x+h)

where A, = %% ) n =1, 2, 3,..... .

and the corresponding solution for eq(A-8) will be

2
An
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By the method of superposition, the general solution

for w; can thus be written as

A2 ‘
a - n t
wl(x,t) = I a e B sinA_(x+h)
- n T n
n=1
where the coefficients a,n= 1, 2, 3,000, can be

determined by applying the initial condition (A-5)

(-]
wl(x,O) = OI(x) = nfl a 51nkn(x+h) E

Invoking the orthogonality condition for sine series, the

initial condition (A-5) gives

h

- 1 .
a, =g fh ¢I(x) 51nkn(x+h) dx

_ 2

= aSEOn + bsh Eln + csh E?n (A-10)

where
LY
EOn * | fh e s1nxn(x+h) dx
A h
z n % [ eAh - (-1)" e-Ah] (A-10a)

-AXx

Eln z hT-f-h xe sinxn(x*h) dx
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?(Ah)(knh) [eAh R Ah]

[can)? + (x_n?1?

A_h
e (&AM 4 (c1)MeAM (A-10b)
(Ah)® + (knh)‘

h .,
j§ I x° -Ax sinkn(x*h) dx
h™ <h

Anh 2Anh

+
[(Ah)2+(xnh;7]7

{
(Ah)7+(xnh)?

2
8(Ah)“(A_h)
2 } [eAN o (c1)PeAM)

[(Ah)2+(knh)7]?

“(Ah)(knh)
b

Ah L (c1)Pe A (A-10c¢)

% (e

+(x h)Y 1
n

[ (An)

To solve (A-6),one note that the boundary conditions
(A-6b) and (A-6c) are prescribed functions of time. The
solution for the problem (A-6) can be deduced from the
similar constant boundary conditions by the use of Duhamel's
theorem, namely,

t 3w2

fo 3t (%ou.t-p) du (A-11)

where Q? catisfies the zero initial condition and constant

boundary conditions
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G =B (A-12) ‘
2xx 2t
Q2 = 0 at t=0 (A-12a)
W, = ) at x=-h (A-12b) i
ﬁ2.= QE(u) at x=h (A-12c) |

The solution for w, can be obtained by the superposi-
tion of steady-state solution ¢ and a transient solution

v which satisfies homogeneous boundary conditions, i.e.,

&2 = plx,p) + v(x,u,t-1) (A-13)
where
2
d¢ - o (A-14)
dx
¢ = QW(u) at x=-h (A-1ka)
o = dp(y) at x= h (A-14Db)
and
v = B v (A-15)
XX t
v = =¢(x,u) at t= 0 (A-15a)
v =20 at x=3h (A-15Db)

The steady-state solution ®(x,u) for the ordinary

different: equation (A-14) is known to be

o(x,) = 2% [ap(u) - a1+ 3 Cag(n) + o ()]
(A-16)
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which, in turn, is the initial condition for equation
(A-12).

The solution for v is similar to that for w;, except
that the initial condition ¢I(x) is replaced by -¢(x,u).
Thus,

A

2
® n
v= I b e B

t sinxn(x+h)

where bn can be obtained from the initial condition (A-12),

i.e.,
h .
bn z fh-¢(x,u) 31nxn(x+h) dx
@w(u) - QE(u) h )
= 5 ;% 31nxn(x+h) dx
2h -h
(p) + 9. () h
- * h E fh sinxn(x+h) dx
= L [-D" () - o, (W]
= Anh E H ¢w H
Thus, Gz = v + ¢
2
oo Al'\
= 3 g LD epu)-ay(w le” B Csiny (x4
n=1 “n

Ot(u)-éw(u) QE(u)-+¢w(u)

* 7T, x +
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After knowing ﬁz, w, can be obtained from Duhamel's

theorem by substituting @, into eq(A-11)

-~

t 3w,
Wy = IO 3t (x,u,t-u) du
2
- -1 *n S L1 0 (1) -0, ()] e'i\ﬁq(t-u)sink (x+h)d
noq BB Y, ptH)=%ytH n H
A2 "fx
o A n t u
= I H% e"'ﬁ_tsinl (x+h) S e.ﬁ— [¢w-(-l)n¢E] du
n=1 n 0

Hence, the analytic solution ¢ for the linear or

linearized convective transport equation(A-1) will be

2 2
A A
welX-FT - (wy + wo) Mx-gt

2 2
A +-An

AX = —g—t sinx (x+h) {a_+

' n

Evaluating the local analytic solution (A-18) at the
interior node NC(0,2t) in Fig. 2(b) will give an algebraic

relationship between the nodal point NC and the seven

neighboring nodal points, i.e.,
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by = 0,20
2 2
AT + )
=2 T nw
= I e sin {a
ne1 7 *%n
A
A 2T 0]
+ Fﬂ / e B [¢w(u) - (-1)n¢E(u)] dp} (A-19)
0
n+l
n -(=-1) 2 s n is odd
where sin 7} =
0 . n is even

Equation (A-19) can be further simplified by letting

n=2m=-1, m= 1, 2, 3,..... , sO that
2 2
. ) A -+Am .
- _(_1)ym B
dye = mgl (-1)" e { ay
'
Ap 2T @M
* 5B fo e [d)w(u) + QE(u)] du } (A-20)
where
x = (2m=1)7
m 7h
a = a.E + b.h E + C th
m S”0m S 1m S 2m
and 2
Am
271. +

IO e (¢w(u)+og(u)] dy
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aZ 42?2
= f?r e B . [eAh( +b . u+c 2) +e'Ah(a +b_u+tc ;f)]du
"y %W " Pw wh ' PEY T CE
\
_ Ah -Ah Ah -Ah
= (e a te aE)eom+(e bw¢e bE)Telm
Ah -Ah 2
+ (e cw+e cE)r €om
where
21t F u 2F 1
eom = 7 emdu=.i(em-l)
m )¢
0 m
2F 1
2t F yu 2F 1 m
elm=lf pe du:%——(?e m —eF +-}:l—)
T 0 m mT ml
2F 1
e = _].L_ IQTu2equ du - _1___ [“eQFmT _ be +
2m 'r? 0 Fm Fmt
2F 1
2e m 1 ]
7 3
(Fmr) (Fmr)
W a2
and Fm 2 B
Thus,
@ ~2F T
_ m m 2
dye T mfl -(-1)7 e {agEgp * bgh Eqp * cgh Eyp
+ Am[ (eAha +e-Ah e, + (eAhb +e My e
hB W t’Com W £’ " 1in
Ah -Ah 2
+ (e cyte cE)r e2m} (A-21)
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Define
m -2F 1
= =(=D" he m
P, = L - i=1l, 2, 3
S .[(‘Ah)2+(>\mh)7]1 ’
o -(-l)mkmh
Q. = L —_—— ~ i=1l, 2, 3
i = [(Ah)2+()\mh)2]l
then m -2F 1
o -2F 1 o ~(=1)"X he
5 -(-1)mE0me Mmoo (AN, ARy 5 m 5
m=1 m=1 (Ah) +()\mh)
=(eAh+e—Ah) Pl
-2F T
% -2F_ 1 w =(-1)"x he ™
I -(-DME e ™ = Ah _ Ahy o 0 5
m=1 m=1 (Ah) +()\mh)’
-2F 1
@ =(21)™ he ™
+ 2¢AR) (PP 4 o~ADy & -0 s
m=1 [(Ah) +()\mh) ]
= 2(An) (efD 4 ¢—Ah) P, - (e - ¢-ADy Py
-2F 1
w -2F 1 w =(=1)™ he M
m=1 m=1 (Ah) +()‘mh)
-2F 1 =-2F T
= -(-l)m)\mhe m , @ -(-1)’“xmhe m
m=1 [(Ah)'+(xmh) ] m=1 [CAR)* +(Amh) ]
-2F 1
AR -An. @ (=™ he T
- 4AhC(Ce -e ) L % m Vi
m=1 [(Ah) +(Amh) ]

=My e~ANy [ Py - 2P, + 8(Ah)2P3] - uAh(eAM . e-Ah)P2

2

B
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) A -2F 1 @« A ~2F T
I (-1 P e M. 5 (e gl-(l-e M)

m=1 FE “om nzl hEFm

® ~(-1)™\ n -2F 1
: I —— B (1-e ™) =Q -P
m=1 (Ah) +(xmh)
oo A -2F 1
m m m
§ ~-(=1) wE elm e
m=1
= m “m e-2pmT
b -GN e (2 - b S
m=1 Fm Fnt m'
-2F_ 1
® -(-1Y™ _h 2 » -(=1)™ h(l-e ™)
_ m Bh m
=2 1 va 5 = L 7 VEY)
m=1 (Ah) +(Amh) T m=1 ([(Ah) +(Amh) 1
2
) Bh
= 2Q) - = (Q, - P,)

@ A =2F 1
;o= (-1)™ ﬁ% €rm © m

m=1

® -2F
4 2 mt
= ¥ -(-1)m-7;L-[ Y - + (1-e )]
m=1 hBF Pt (rm,)7
m
© -(-1) h ap2 -C-1™ h
=4I 7 7y -4 I ) 773
m=1 (Ah) 4(Amh) U m=1 [(Ah) 4(th) ]
? = -(-1)™ n -2F 1
+ ?(—B-;-“)2 L Am moy

(l-e
m )

1 A2+ h m21°

m
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2 2
= uQ, - u%ﬂ Q, + 2(-E}-}Tl-)2(Q3 -

Substituting ag, bg etc. into eq(A-21), the 8-point

FA formula becomes

- Ah Ah Ah
dne (e +e JPy ¢gc ¢t [Ah(e

Ah Ah Ah,_-Ah

2 Ah -Ah
- P, + 4(Ah)“P,;] - 2Ah(e™ -e )Py} (ogp + bgy

Ah -Ah Ah
) + (e by * © ¢SE) (Ql-Pl) + [e (u¢wc

- 2¢5¢c

2
-Ah Bh
“30gy - b * e (Moo - 3bgp - b)) [Q) - (5(Q,

-P,)] + [eAD ) + e

(ogw * Onw ~ 2% (bgp * Oyg -

. .
2¢EC)] [201- )Q2-+u( ) (Q, - Py )]

= PPy .+ ) { 2( P,) + 2
= ey e ¢NE Q) - - Q Q-

Bh

W——Q2+u( HQa-P)}+(e WC+€%h

ogc)

2 h2
{qu - ujr—(Q2<-P ) -4Q, + 8(17—)Q2 - 8(17—)(Q3

Ah, 1
- PO} + gy (e[ 3P, -AnP, + 7? -P, + 4(Ah) p3

N
-2ARP, + Q, -P, -3Q; + 3(———)(Q2-P2) +2Q -




ORIGINAL PAGE 18
OF POOR QUALI

-Anp_ 1

17—)Q2 + “‘1?") (Qy - P, )l + e 5P, - AhP, +

2

1 2 -Ah, 1
7Py - P, + 4(Ah) Py + 2AhP2]} + g {e { 5P +

1 2

2 2 2
3By (g, - P,) + 2q, - w50, + v(E2(q, - P

Ah. 1 1 2
e [-7P1 + AhP, + P, - P, + 4(Ah) Py =~ 2AhP2]}

Ah -Ah

2
+ g {(e +e ) [Pl - Py + 2P, - 8(Ah) P3] +

2

uah(efh - o=AMyp ) (A-22)

Cxwonw * CnefNE ¥ Cwetwe * Cretec * Cswésw
Csedse * Cscésc (A-23)

2
AN [o, - %?—(p +3Q,) + u(1r—) (Qq - Py)]

_ _=2Ah
e CNw

2

2
Ah Bh* Bh™(?
e [U(Ti—) (pQ*Oz) - 8(71—) (Q3—P3)]

. _=2Ah
e ch

M [-p JAhP, + u(Ah)7P - (8 2)(3p +Q.) ¢
-Py - 2 T Q,

an’ -Ah |

1;—)(Q3- P)] ¢+ e -P 4Ah92'0u(Ah) P )]
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. .—Ah 2
CSE T e f-P + 3AhP2 + W(Ah) P 1r-)(3P *0 ) +
Bh Ah 2
!4(—7— ) (Q3—P )]l + e [-P,‘, -AhP2 + 4CAh) P3]

(]
4

Ah 2 -Ah,
sc - e [?P2 + QAhP? - 8(Ah) P3] + 0 l?P? - “AhPQ

- 8(Ah)2P2]

It is noted that there are five series summation terms
P?, P3‘ Ql’ Q) and aneed to be calculated. After some
investigation, it is tound that three of them can be

expressed in closed form as

1
Q < b e (A-?“(‘)
1 OKR *Q-Aﬁ
Ah oA ( )

Q = 3 A-ub
© oAy ARy

. JAh AR
O A T A TRy Y TR AR
TosAan (AN Ay T g A T (GAN TS

1 (A-24¢)

v AR T CAR Y et

(Ah)Y (e ¢ e )

Hence, numerical summation is need for P, and P3 only.
.
There are several ways in obtaining the analytic expres-

sions (A-244) to (A-2uc¢). One of them will be outlined in

the following.,
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Consider
! a, sxnxn(x+h)

sinxn(x+h) dx

h
n [eAh-(-l)ne'Ah]

?
+ (Anh)

(Ah)*

Fvaluating eq(A-25) at x=0 gives

® -(-1D™ h
. m
2,

L V)
m=1 (AR)® + (\_h)
m

m
-(-1™M\ h 1

or Q, = % < —
1 m=1 (Ah;7 +(Amh)7 éxﬁ'.e Ah

After obtaining the closed form of Q,, the analytic
expression for Q, can be easily obtained by differentiating

both sides of eq(A-25a) with respect to Ah, i.e.,

dq, ., -(-1)"‘\mh

JUARY * IR

L
m=1 [(Ah)7¢(xmhi?]7

m
= -(-1) Amh e

Lo : '
m=1 ((Ah)70(xmh)?]"7 2AR (e +

or Q2 3
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Similarly, the analytic expression for Qy can be
obtained by differentiafing eq(A-26) with respect to Ah

as follows

dq, » -(-1™\ h
= - 4Ah I
d(An) m=1 [(AR)® + (xmhf[]"’
. (eAh_mANy2  Ah AN
2AR (AN 4 omARYT T oAy Z(eAh 4 ARy 3
+ 1
2(AR) (ePD 4 o~Ah)
thus
® --1Y™ h
Qy = ¥ —-— ul N
3 nt1 [(AR) + (A 07
(M2 JAN_ -AR )
4 (AR 2(ePDee-BRE g any S (ePhye~ANy?
1
8(AR) % (AN 4 ¢~8N)
. AR -Ah
- + e - e
o) - -
8(AR) 2 (ePPie=ARy g an) 3(ePfhieANy?

(A-27)
O-Ah)3

(Ah)z(eﬂﬁ +
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A-2 Exgonential and Linear AEEroximation for

Tnitial Function, and Linear Approximation

for Boundary Functions

In this case, the
(A-1) is solved in the

In order to avoid

cients appeared in Sec.

function based on the natural solution of governing equation

linear convective transport equation
local element shown in Fig. 2(<).
the unrealistic negative FA coeffi-

A-1, an exponential and linear

(A-1) is employed to approximate the initial condition. As

to the boundary conditions, linear functions are used to

approximate the boundary conditions in terms of the two

nodal points available

on each boundary, i.e.,

2A
6(x,0) = ag (e -1) + box + g (A-28a)
¢(-h,t)= a, + byt (A-28b)
¢(h,t) = ap + bot (A-28¢)
where
$sg * dsw ~ 2%
ag ~ 7
4 sinh“Ah
s - 7h ’ s ° %sc»
a. = ¢ b= Yc = *sw
W Sw? W T
‘}:c‘ ’ss

ap = ¥gp> b

™
]

e+ et s B RO i R R
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With the introduction of a change of variable
2
Ax-£%—t
¢ 2 we

the convective transport equation (A-l), initial condition
(A-28a) and boundary conditions (A-28b) and (A-28c) can be

transformed to

Wex - B W, (A-29)

eAx-fb xe’Ax +(cs-as)e'Ax= QI(x) (A-29%a)

w(x,0) = a S

S

2
A
Ah+'ﬁrt ,

w(-h,t)= e +bwt) Ow(t) (A-29b)

aw

A?

—Ah*—g— t (

w(h,t) = e +bpt) = () (A-29¢)

3x
The solution of eq(A-29) for w can be obtained by

superposition of two simpler problenms
(A-30)

Where w, satisfies the homogeneous boundary conditions, and

Wy satisfies the zero initial condition as follows
(A-31)
(A-31a)

(A-31b)

(A-31c)
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w = Bw (A-32)
2xx 2t

wz(x,O) =0 (A-32a)

wz(-h,t)z @w(t) (A-32b)

wz(h,t) = OE(t) (A-32c)

The solution W, can be obtained by the method of

separation of variables as that described in Sec. A-1.

It gives
M
() --B- t .
wy = E a e sznxn(x*h)

n=1 n

Which satisfies the governing equation (A-31) and
boundary conditions (A-31b) and (A-31c). The coefficients

a  can be determined by the initial condition (A-3la)

h

a = % {h ¢I(x) sinxn(x+h) dx
= agby + bSh Eyp t (CS"aS)EQn (A-33)
where
Fon® % {: eMX sinxn(x+h) dx
z *n" [e”AP _ (-1)"eAM (A-33a)

(Ah)7+(xnh)?

h

S ¢ -AX .
Lln“ ;7 {h xe sxnln(xOh) dx
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2(An) (A _h)
= - 72 n’y ? [eAh"("l)ne-Ah] -
[ (Ah) +(xnh) 1°
A h
L M— LS S (A-33b)
(Ah)‘+(knh)
) h -AX
E?n: % {h e sinAn(x+h) ax
A h
= n [cAh-(—l)ne'Ah] (A=23¢)

2 pj
(Ah) " +( \nh)
The solution w. for eq(A-32) can be derived from
Puhamel's theorem in the same way as that shown in Sec. A-1

also, 1.e.,

2 2
Ao xn
@ ) - t t =y
w, = L F% e B sin)\n(x+h) / eB [0w-(-1)n0r] du
¢ n=1 0 '
(A-34)
Thus. the local analytic solution will be
2 2
Aw-%;t Ax-—%rr
¢ = W ¢ :(w1 +w,)e
2
Al
z Y ooe ) sin)‘n(x*h) {up +
n=1 '
")
‘n
A t = U
n B " n . .
RS € ( Ow(u) - (=1) On(u)] dp } (A-15)
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When evaluating the local analytic solution (A-35) at

an interior node P(0,1), a 6-point algebraic FA formula is

obtained. \
¢p = ¢(0,1)
A+l
= ngl e- TTsin D2.'1{an +
Ay
;% JT e 1;11[ &, (W) —(-l)nQB(u)] du} (A-36)

.. nmw .
Because sin = = 0 for even number of n, equation

(A-36) can be further simplified by letting n:=2m-1, so that

2

-

_ > m B
¢p = fl -(=1)" e {an +

AZ+ A

2
) T "‘u
L e L [ ’w(“) + OE(u)] du } (A-37)

where 2
T -Jgu

B
IO e [o,Cu) + °E(“)] dy

A

- T Fu
(eAha ‘e Aha ) 7 m

W "/

- v Fou
(eAPp te™AMp ) e ™ ay
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= | :
E (? . F t
f ¢ 2 (eAhaw-+e-AhaB) g; (e ™ -1) + (eAhbw=+e-Ath)T *
E
= F 1 ’ ,
=4 __1__(eFmT'_em . Ly \
. Fm PmT Fmr
. a
5 an
E A2 + X;
=~ Fm } B
?
3 Thus,
™ m —Fm‘r
¢p = mfl -(-1)" e {agEy, * bgh Ej +(cg -ag)E,
A F 1
m Ah -Ah m Ah
+ Fﬁﬁ;[ (e ay*e aE)(e -1) + (e by, *
F 1
F 1 m
e_Ath)r(e "Lt s ) (A-38)
mt nT
Define . -Fmt
® -(-1) }\mh e
P, = % - i=1, 2
Loomnr nam e o |
w -(-l)m).mh
Q. = I - i=1, 2
17 m=1 [(Am)? + (Amh)?]]‘
then
by m ImT Ah . -Ah
I =-(=1)" e EO = (e te )Pl
m=1 m
) F 1
I --D™e™ £ = 2anCeAPre™AMp, - (AMe AMyp,
m=1 m . :
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© F
I -1 e ™ £, = (e™MreAMp,
m=1 .
o «F v A F
I -(-1)M e M }-m-';-.‘--(e'“ -1)
m=1 m
® -c-1)mxmh -F 1
= I (1 -e ) = Q -~ P
m=1 (Ah)77+(xmh)7 171
F 1
o -F 1t A F m
I D" e ™ (e ™. S )
m=1 m m m
w -(-1)™\ h 2« -(-1)™\_hC1 -FmT)
- m' _BhT T 7Y TmUo"C
m=1 (Ah>7+<xmh)7 S VS RPN
2
_ Bh
= Q - 4 Q=P
Hence,

- Ah ~-Ah Ah -Ah Ah
¢P = aS(e +e )P1 + bSh[2Ah(e ‘e )P2 - (e’ -
e'Ah)Pll + (cS -as)(eAh-te'Ah)Pl +(eAhaw +

2
-Ah Ah -Ah Bh

e aE)(Ql-Pl) + (e bw+e bE)T[Ql*T(PQ-

Qz)]
!
z 7[ ¢SE - ¢sw - cothAh (OSE + ¢sw - 2¢Sc)](“ﬁh coshAh P,

. Ah -Ah Ah
- 2sinhAh Py) + ¢o.(e” e TIP) +(e g, +

e Mospr(ey - Py + (e Cope - agy) +e7ACog -
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Bh”
ogp) 300, + =

(P, = Q,))

Ah -e‘Ah¢SE) ( 2Ah cothAh P. -

= (2coshAh ¢o.- e ogy ‘ 2

Ah -Ah
Pl) + 2coshAh P1¢SC +(e ¢Sw-*e ¢SB)(Q1-PI) +

2
Ah -Ah Ah -Ah Bh
[Ce™ oot e ope) - (e bg v e g [ Q) + == (P,
- Q)]
Ah -Ah

= (e oy t e ¢SE) {Pl-QAh cothAh P2 +Ql-—Pl«-Ql
Bh? Ah -Ah Bh?
- Py Q) b+ (edyate o) {Q) v (P, -

Q2) } o+ ¢SC { 2coshAh ( 2AhcothAh P, -P +P1)}

2 ~f1
or
®p = Cuc®we * Crc®ec * Cswlsw * Csefse t Cscfsc |
(A-39)
where
2
. _ _Ah Bh ) _
_ -2Ah
Cpe = © Cuc (A-39b)
Ah . BhZ
Cqy = © ( -;—( Q, = P,) - 2Ah cothAh P2] (A-33¢)
__-2An
Cop = © Cou (A-394)
CSC = 4Ah coshAh cothAh P2 (A=-39e¢)

Recause Ql’ Q, can be expressed in closed form as
shown in eq(A-24a) & (A-2ub), there is only one series

summation P, need to be calculated numerically.
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A-3 Hybrid Finite Analytic Formula for One-Dimensional
Convective Transport Lquation

In this formulation, the unsteady term in the convec-
tive transport equation (A-1) is approximated by a simple

finite difference formula of the form of

ép - ¢
B¢, = B £ __-SC . constant =g (A-40)
Thus, eq(A-1) becomes

The analytic solution for eq(A-41) can be easily

found to be
o= ale’™.1) 4 b - Ky (A-42)

where a and b can be determined by the boundary conditions

at x = +h respectively.
¢ = by - aeAM oy b - g%r\ at x= h
¢ = dye T d(e-zAh'-l) + b ¢+ g%}\ at x:=-h

Fvaluating the analytic solution (A-42) at x = 0, a

Y-point FA formula can be obtained as tollows

e’ MPo1ygy, +(e'2A“-1>¢EC - g% (e’Ah, o=2Ah )

bp ° TAR ~7Ah
e - @
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AR -Ah
* byc !t *Rc _ tanhah .2

= gh
eAB . -Ah 2Ah

Substituting g into eq(A~43) results in

Ah -Ah
e Ouc *® % Bn? tanhAh

¢p = A TAR— C 9T —Ah - (P ¢sc)
e + o

]
¢n = 73— (Cue?
P T 1#Cq.  VCTWC

+ )

Cre®ec * Ssclse

where

2
Con = %%m Ei%%ﬁh (A-t4a)

(A-uyb)
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APPENDIX B
FINITE ANALYTIC FORMULATION OF

UNSTEADY TWO-DIMENSIONAL
CONVECTIVE TRANSPORT EQUATION

In this appendix, the analytic solution for unsteady
two-simensional convective transport equation is derived
for a local element as shown in Fig. 3.

Consider a dimensionless unsteady two-dimensional

convective transport equation of the form of

bxx * gy = R4 +Cug) + (v¢)y] +F (B-1)

where ¢ may represent any one of convective transport
quantities, °j’ such as vorticity, velocity, concentration
or temperature. The coefficients u, v and F may be functions
of independent variables X, y and t, and dependent variables
‘j‘ R is a dimensionless parameter, and is Reynolds number
when ¢ represents vorticity or velocity. Since, in general,
an analytic solution of equation (B-1) in the local element
is not available due to variable coefficients and/or
nonlirearity, the finite analytic numerical method is used
to obtain the local analytic solution.

In order to solve the convective transport equat ion

(B-1) analytically in the local element, eq(B-1) is first
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rearranged to be

O * ¢yy = R(¢t+U¢x+v¢y) +F+R[(u'¢)x+(v'¢)y] l

(B-2) 1

with L4

u(x,y,t,¢j) = U + u‘(x,y,t,¢j) (B-2a) ]
v(x,y,t,¢j) =V + v‘(x,y,t,¢j) (BR=2b)

where U and V are representative constant values in the

local element, for example, the velocities at the interior

point P or the area-averaged velocities over the small

element. f
When the local element is small enough, the deviations ﬁ

u' and v' from U and V should be small also, therefore the

term R[(u'¢)x-+(v'¢)y] may be considered as a higher order

correction term. Denoting two time steps t__, and t_, one

may locally linearized the convective transport equation

(B-1) by approximating the inhomogeneous and the higher

order correction term as a function known from previous

time step to1o i.e.,

n

Coge * 8y = RO + U0, + V0" 4 77000 y,09) (B2
where

f(x,y,t,¢j)

F(X7Ysts¢j)+R[(u'¢)x+(v'¢)y] «.

Equation (B-3) is a linearized PDE with constant
th

time step, various solution methods

gsoefficients at n
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as those described in Appendix A can thus be employed to
obtain the analytic solution for this linear partial
differential equation.

In order to reduce the complexity of the derivation
and to save the computational time, a hybrid FA method as
that outlined in Sec. A-3 will be employed in this appendix
to approximate the unsteady term as follows

-1
op - p

T

R¢, = R = constant (B-4)

Furthermore, the nonhomogeneous part f“’l(x,y,¢j)
can also be approximated by a representative constant
value fP in the local element to further reduce the
manipulation effort and computational time needed. Under
these approximations, the unsteady 2D convective transport

equacion (B-1) is simplified to be

Oux * Oyy = A0, + 2Bo, * g (B-5)

yy

with As 7 RU, B=3 RV
and g =R————— ¢+ f (B-5a)

The constant inromogenecus term in eq(B-5) can be

taken care by introducing a new variable

o =6 ___?3—_7- (Ax + By) (B-6)
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i such that the new variable § satisfies the homogeneous !
! !
' governing equation
!
Bex * Byy = 200, * 2By (B-7) \

in the local element.
For the problem to be well-posed, four boundary
; conditions are specified on the east, west, south and north
boundaries in terms of the 8 boundary nodes of the local
element. Depending on the local element and boundary
functions chosen, several local analytic solutions will be
derived in the following
(1) Uniform grid spacing local element (hE=hw=h, hN=hS=
k) with exponential and linear boundary approxi-
mation. (see Fig. #(a))
(2) Nonuniform grid spacing local element (hE#hw, hN# hs)
with exponential and linear boundary approximation.

(see Fig. 4(b))

(3) Uniform grid spacing local element (hE=hw=h, hnzhg

=k) with piecewise-linear boundary approximation.

B-1 Finite Analytic Formulation of Two-Dimensional Convec-
t Transport Tquation for Uniform Grid Local Flement

ive
with Lxponential and Linear Boundary Approximations

In this case, the local analytic solution for steady

or unsteady 2D convective transport equation is derived in
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a rectangular local element of uniform grid spacing shown
in Fig. u(a).

For the linear homogeneous partial differential
equation (B-7) to be well-posed in the local element shown,
an exponential and linear boundary function based on the
natural solution of equation (B-7) is specified on all of

the four boundaries in terms of the 8 boundary nodes of the

local element. For example, the boundary condition at north

side can be approximated by

~ - 2Ax -
@N(x) = ay (e -1) + byx + cy (B~-8a)
where
o - N Onw~ e
N 4sinh’an
- Syg = Sy ~ COthAR(dyr + Gy = 24y 0) -
NF 7R > ON T ¥y

and the other three boundary conditions for south, east and
west sides, i.e., ¢5(x), ¢p(y) and ¢,(y) can be similarly

approximated.

d.(x) = a, ( eQAx-l) + b.x ¢+ ¢ (B-8Db)

¢s S S S

$E(y) = aE( esz..l) + bEy + cp (B-8c) 5
;w(y) = aw( e?BY _ 1) bwy + oy (B-8d)

With the introduction of a change of variable
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= $ = weMXtBY (B-9)

Equation (B-7) and boundary conditions (B-8a) to (B-8d) are

transformed to

22
Wox + wyy = (A"+B)w (B-10)

-Bk A -A -A
wix,k) =e [aNe X4b, xe x+(cN-aN)e x]=w1(x) (B-10a)

N

eAx+b xe'Ax+(c —aS)e"Ax]=w2(x) (B-10b)

Bk
wix,=-k)= e [aS s g

E -Ah B -B -B
- w(h,y) = e [aEe y+bEye y+(CB-aE)e y]=w3(y) (B-10c)

Ah B ~-B -B
w(-h,y)= e [awe y+bwye y+(cw-aw)e y]=w“(y) (B-104)

Under the method of superposition for linear equation
(B~10), this problem can be solved analytically by further
dividing it into foun simpler problems with each of them
contains one inhomogeneous and three homogeneouslboundary

conditions, i.e.,
4 N 9
W=wWw +w +w +w (B-11)

Problem (1)

R TUE S (B-12)
XX yy
wN(x,k) = wl(x) (B-12a)

WNix,-k) = wN(h,y) = wN(-h,y) = 0 (B-12b)
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Problem (II)
“ix + wsy = (A% + B) w° (B-13)
ws(x,-k) z wz(x) (B=13a)
ws(x,k) = ws(h,y) z ws(—h,y) =0 (B-13b)

Problem (III)

E

wE +wE = a2+ w (B-14)
XX yy

wEh,y) = wy(y) (B-1b4a)

wE(-h,y) z wE(x,k) = wE(x,-k) =0 (B-1wy)

Problem (IV)

W W . 2,452y W

wxx+wyy- (A +B°) w (B-15)
W

w (-h,y) = w, (y) (B-15a)
Weh,y) = wWix,x) = wix,=k) = 0 (B-15b)

Problem (I) - (IV) can be solved analytically by the
method of separation of variables. For example, let wN =
X(x)Y(y) and substituting it into eq(B-12), the linear
PDE is then separated into two ordinary differential

equations.

X" + 22X = 0 (B-16)

X(=h) = X(h) =0 (B=16a)
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E
e | y" - (A2 spZeady = 0 (B-17)
Y(-k) = 0 (B-17a)
The two boundary conditions in the x-direction, x = \

ORIGINA". PAGE {9

th, in this case can hre used to find the eigenvalues Xn'

And the series solution wN can be written as

Qo
wN(x,y) = I An sinhun(y+k) sinxn(x+h) (R-18)
n=1l

. _nm - i < ? -
with TR un—/A +BT A n=l, 2, 3,..0-

The coefficients Al in eq(B-18) can be easily obtained

by applying the nonhomogeneous boundary condition (B-12a),

i.e.,
wN(x,k) = wl(x) = n§1 A, sinh 2y k sinxn(x+h) (B-19)
where
1 M :
AL R 'Ch wl(x) 31nxn(x+h) dx
* SInh 7y X U ayeon * Px" €1n ¢ (cy-aydeyyl (B-20)
and
SN A% i (xen) dx
€on " h f-h n
A h
: n fe~Ah . (.MM (B-20a)

7 p{
(Ah) +(xnh)

S
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1 h -Ax
= =y I/ xe sinkn(x*h) dx
h -h

2CAR) (A 1)

Ah n_=Ah
212 [e™ - (=1)"e ) -

[cAh>2+(xnh)

e e, i A e £ g

A h
n [ AP . (~1)"e~A (B=20b)

2 7 !
(Ah) +(Anh) f

1 h -Ax
£ J e sinkn(x+h) dx

-h

A h
n [eAh - (-l)ne—Ah] (B=-20c)

am 2+ (A_m)?
n
The local analytic solution (B-19) when evaluated at
the interior node P of the local element located at (0,0)
gives the finite analytic algebraic equation relating the

interior nodal value to the. 8 boundary nodal values as

N _ N .z . .
wp W (0,0) = z A sinhy k sinx h (B-21)
n=1
nn o, n=2m
Since 51nknh = sin 5= = m=1, 2, 3,...

-(-1™, n:=2m-1

eq(B-21) can be further simplified to be

v = =1 ™ sinnyk
Wp © mf] sinh 2y X Layegn byt ‘1m"°N'°n’e2m]
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. =Bk —(-1)
=" T Zooshn k| *Nom * PP et (Cxay)eopn]
\
(B-22)
Defire
m 7
- ~(-1)™\ n | :

X ~
- 2 241
m=1 [(Ah) +(Amh) ] coshpmk

s
"

: , i=1,2 (B-22a)

then
m
s =(=DT  _ (,Ah__-Ahy T -(-1)7h
m=1 coshypk “Om m=1 [(Ah)2+(Amh)2]coshumk
= 2coshAh E1 (B-22Db)
- _(_1ym
? :il%lff e. =-(efN.gmAly ¢ L Ayt
m=1 SCSNHp lm m=1 [(Ah;?+(kmh)?]coshumk
© -(-1)™x h
+ 2(Ah)(eAh+e-Ah) b v ? 5
m=1 [(AR)“+(A_ h)“1°coshu_k
m m
= 4Ah coshAh E2 - 2sinhAh El (B-22c)
© (=)™ |
> D" . (AN, ANy S (-1)"Ayh |
m=1 COShumk 2m m=1 [(Ah)2+(xmh)23coshumk
= 2coshAh E (B-224)

1

Substituting ays by and Cy into eq(B-22), the local

analytic solution becomes
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————— V

~N N 1 -Bk 1~ . L.
wp = 5e {7 [ OnE ~ W T cothAh(&NE *+ by 2¢NC)]

€
s
f

(4Ah coshAh E, - 2sinhAh E,) + $NC(2coshAh E,)}

e~ BX { (2coshan &NC-eA“$Nw.-e'Ah$NE) ( Ah cothAh E,

1}

1 - L
-7 El) + (coshAh El)¢NC} |

-~Ah~ Ah~

-Bk 1
e [ ¢ dnp * e ¢Nw)

5 El-AhcothAh E2)(e

+
(2Ah coshAh cothAh E,) 4y ] (B-23a)

Similarly, $§’ &g and $¥ can be solved in terms of the

nodal values at the south, east and west boundary respec-

tively.
xS _ _Bk 1 -Ah~ Ah~
¢p = e [ ( 5 E{ - Ah cothAh E,)(e ""¢gpte bo) *
(2Ah coshAh cothAh E2)$SC] (B-23b)
~E _ _-Ah 1 -Bk+ Bk~
op = e [ ( 7 E] - Bk cothBk Ej)(e "“¢yp*e dgp) *
(2Bk coshBk cothBk Eé)aFCJ (B-23¢)
W Ah 1 ., -Bk~ Bk~
¢P = e [« 5 El- Bk cothBk Eé)(e oyw € ¢Sw) +
'\
(2Bk coshBk cothBk E2)¢WC] (B-23d)
where
o -(=1T(AK)
E:!L = I m i =1, 2

7 Y ES ’
m=1 [(Bk) +(apk) ] coshuéh
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AL = Sz?illl \ o=/ A + B

Saar?

m

The 9-point FA formula relating the center nodal value
&D and its neighboring nodal values can thus be obtained by
superimposed the {our solutions of the linear problems (1)

- (IV), or

~ N, eSS E W
°p2¢p*¢p+¢P*¢p

) (e~Ah-Bk6NE \ eAh-Bk6Nw T
eAh*Bkasw)[ %(El +E}) - Ah cothAh E, - Bk cothBk 3]
+2Ah coshAh cothAh E, ( e‘Bk$NC-+eBk$SC) s
2Bk coshBk cothBk T3y (e™Ahg 4G ) (ai2u)
Since ¢ = 1 and ¢ = -Bx+Ay are two particular solutions

of convective transport equation(B-7), and both of them can
be represented by the exponential and linear boundary
functions (B-10), it is instructive to utilized these exact
solutions to obtain the analytic expressions between series
summ2*ion terms By F{, , and Eé as follows

(a) ¢ = 1

Since ¢ = 1 is an analytic solution of eq(B-7) and

can be represented by boundary functions (B-10), it should

i
i
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satisfies the FA formula (B-24) also. By substituting

~

=9

-~ ~

®p = %pc * Pwe T Pne T Psc T One %sp = Pow " !

MW~ YSE
into eq(B-24), an analytic relation between E, and E] can

be obtained

do=1c= (e~ ANl (o "BReeR) [ 5 E *E]) - Ah cothAh E, -

Bk

Rk cothRk £!1 + 2Ah coshAh cothAh Rg(e‘9k+e )

+ 2Bk coshRk cothBk Eé(e—Ah+eAh)

2coshAh costh(El+Ei)

or

- 1
Ey * B) * 7CGSKAR CoshBK (B-25)

(b) & = -Bx+Ay
Similarly, ¢ - -BxtAy satisfies the FA formula (B-2u)
also. It gives 6P = 0, $FC = =Rh, 6NC = Ak etc. By substi-
tuting these values into eq(R-24), an analytic expression

between between F, and I} is obtained.
. <

30> [Ak(o~AN-BA | AR-Bk__-Ah+Bk_ Ah+BK oo Ah-Bk,

' - -Rk -
ANTIK_(mAN-BK_o-ARtBRy ) 3¢1, # ED -AN cothan t,

- Bk cothBk F' ] + 2Ah coshAh cothAh B?Ak(e'Bk-

e™ ) 4+ 2Bk coshBk cothBk E3 Bk(eAP o e=AN)

A . A
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1 : <oshBk . ;
T SSERAR T - (Rh sinhAh coshBk = AN coshAh sinhBk)

asnn

» WCAN)Y(BRK) conhAk sinhBk cothBh E; '

- WCARY (R coshBR sinhAh cot hAh lt)

Wy

pr (!‘\)r \ AN }anhah;-hhm}ﬂnhAh (Retta)
Y X O FRUTRCTEUShAY COshRK c

the same analyt ic expression (P-2ta) may also be chtained
by ditterent iating (R=28) with respect to A and By ooy
Lo e IR .
NS B T ) R PR
SAoaA ST oo theth

N AN Rh tanhAh = Ak tanhBk
- N ' ) - MARA ~26h
LU WAR CoshAR coshiy (R-2ot)

Det ine
|

| R ( ll + ‘.{\ - Ah cot h.’\h !..\ - RN cothik l':, (R-, v )
FA - JAh coshAh cothAh B (R=2640)
I'h NN conhiN cothih 0! (R=60)

Then the 9-point tinite analvtic solution (A=) can he

asummarised o
& Vet ' Swwtaw t Uardsr ! Cpedpe b Swetwe

O R TR (R=2 ")

whete
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2 e-Ah-Bk - ‘Ah‘Bk E

E

. o-Ah+Bk . QAR*BK .

SE © E

c

=Bk . Bk
CNC e (EA) CSC e (EA)

-Ah Ah
e (EB) ch e (EB)

Cre

After applying the analytic expressions (B-25) and
(B-26), there is only one series summation term 52 need to
be evaluated numerically. In most of the applications, 10

terms of summation for E, are enough to achieve an accuracy

of 10°%,

For the unsteady, inhomogeneous convective transport
equation (B-5) with higher order correction term, i.e.,
g # 0, the local analytic solution can be obtained by

substituting ¢ of eq(B-6) into eq(B-24) for ¢ , which gives

+

+ + C

¢p = CNe®NE *Cnw®nw * Csefse * Cswosw * Cretec

+ C

Cwebwe * Cnedne sc®sc

1
[ AR(C ¢
2(AZ+B2) NW ~ "SW

C -C -CNC)] (B=-28a)

Cge) * Bk(Cgp * Coy *Cqen = Cyp -Cnw

1
C, = { Ah tanhAh + Bk tanhBk -
P 2(AZend)

bcoshAh coshBk [(Ah)252~0(8k)2£5] } (B-28D)
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By substituting x of eq(B-5a) into eq(B-~28), a

10-point FA formula for unsteady inhomogeneous convective
transport equation with higher order correction term can

be obtained

- 1 A
e = TR o Cne®ne * Cnwtww * Csefse * Cswdsw *
T P
R n-1
Cectec * Cuctwe * CnePne * Cscfsc * T Cpfp
- CPfP) (B-29)

where

_ ¢n=1
fp = £7706y50901p(g,0)

and the nodal values without superscript denote those
values evaluated at nth time step, while ¢g'1 denotes

the nodal value of interior point P at (n-1)th step.

B-2 Finite Analytic Formulation of Unsteady Two-Dimensional
Convective Transport Equation for Nonuniform Grid

Spacing Local Element with Exponential and Linear
Boundary Approximation

In previous formulation, the local analytic solution
is derived in terms of the eight boundary nodes which are
equally spaced on the boundary of the rectangular local
element with grid spacing h and k respectively. A 9-point
FA formula is then obtained by evaluating the local
analytic solution at the center of the local element. The

resulting 9-point FA formula is applicable to problems
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with uniform rectangular or square elements over the whole
domain of calculation. However, in many engineering appli-
cations, the use of nonuniform grid spacing local element
as that shown in Fig. 4(b) is often desirable, because it
enables us to obtain physically meaningful solutions more

effectively.

It is possible to derive a local analytic solution !
for the local element of nonuniform grid spacing (see Fig. 3
or Fig. 4(b)) in a way similar to that outlined in B-1l. For
example, an exponential and linear boundary function can be
employed to approximate the north boundary condition in
terms of the three unequally spaced nodal values JNE’ $Nw

and aNC as follows

aN(x) = aN( ezAx-l) + bNx + Cy (B-30)
where
Ywo e Thw | o, i _
ay =\ . = 5 Unydyp*hpbe- (Pe*hy) dyc!
e~ e Pg (B-30a)
e-2Ahw . .
b = ONW ~ #NC
N 2Ah i
e -1 ¢E - InC
1 -2A _ 2Ah
= 5l (e -1)(¢"E-;NC)-(e -1)(3Nw -suc)
(B-30b)
c, = &

N * NC (B-30¢)

B T T T
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and
) -2Ahy
e -1 -hw ?AhE -2Ahw
D = =hw(e -1) +hE(e -1)
?AhF
l e IS | h

E

With homogeneous boundary conditions assigned for
three other boundaries, the corresponding analytic solution

wN(x,y) for eq(B-12) will be of the form of

\
‘ N ®
1 w (x,y) = m§1 An coshun(y-+hs) 51nxn(x-*hw) (R-31)
| ' 2
where
_ nw _ 2 2 2
‘TR R, uy = /AT BT e

and the coefficients A, for the series solution (B-31) can
be obtained by performing the similar integrations as €on’

e and e, in Sec. B-1. Similar solution procedures can

In
also be applied to obtain other analytic solutions w(x,y),
wL(x,y) and ww(x,y). The 9-point FA formula for nonuniform
grid spacing local clement is then obtained by evaluating

the local analytic solution w(x,y) at the origin ¥(0,0) of

the local element, i.e.,

T . . X S
°p : w(0,0) W + wp + w4 Wp
with
N o
wp ® nfl An coshpnhS sm)\nhw etc.

o BT
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However, because of the unequal upper and lower limits,
the evaluation of A, is more complicate. Furthermore, 12
i and Eé
will be encountered in obtaining the local analytic

more summation terms in additional to El’ EZ’ E

solution. These additional difficulties may toally offset
the advantages gained from the use of nonuniform grid.
Thus, in present study, instead of using this general
formuldtion, a simpler approximation method utilizing the
local analytic solution (B-28) or (B-29) for uniform grid
rectangular element will be employed to derive the finite
analytic solution for the case of nonuniform grid spacing
formulation.

Consider the case he < h, and hN‘:hS shown in Fig. u4(b)
as an example. A smaller rectangular element of width 2hE’
height 2hN and with the interior point P located at the

center can be drawn as shown. If suitable interpolation

functions are employed to approximate the unknown nodal

» * .
values ‘NW’ °WC etc. on smaller rectangular element in terms

of the known values ‘NW’ °NC’ op etc. at 9 nodes which are
unequally spaced on the larger element, then the FA formula
(B-28) or (B-29) derived previously for ¢p can be applied
to this smaller rectangular element directly. After some
simple manipulation, a FA formulation for nonuniform grid
case can be obtained.

Although there are several interpolation functions
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* #*
may be used to approximate the nodal values ¢NW’ ¢WC ete.,

the same exponential and linear boundary function will be
employed as the interpolation function to obtain the
unknown nodal values on smaller rectangular element, so
that the error introduced by interpolation will be
minimized. For example, the north boundary condition can

be approximated by the boundary function

¢N(x) = ay ( e2Ax-1) + byx + cy (B-32)

where ays bN and cy are defined in eq(B-30a) thru (B-30c).

Evaluating the boundary function (B-32) at x = -hF

*
will give the interpolated nodal value ¢

NW

. ~2Ah
dyw = ¢N(—hE) = ay (e -1) - bNhE + oy

=(s—l)¢NE + §¢Nw + (2-S—§)¢NC (B-33a)

where
2Ah -2Ah
hyle F+e  Eog) i hy

s = 7Ah ~7AR; R

hw(e -1) + hE(e -1)

Similar exponential and linear boundary functions can

* *
be employed to obtained other nodal values ¢WC’ ¢sw etc.

* - (g-1) + 5S¢, + (2-5-5)¢ (B-33b)
we Pec Wwe P
¢§C = (t-Dgy. + Tog, + (2-t-Drg, (B-33c)
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N - _aa
¢gp ° (t-Doyp + Togp +(2-t-Dlo (B-33d) |
¢y = (E=Doyy + Togy, + (2-t-D)é, . g
and §
oz (s-1) + 5o, + (2-t-D)on |
dgw © “8-llegp * 54, “t-tiege !
}
= (s-l)(t-1)¢NE + t(s—1)¢sE + (s—l)(2-t-t)¢Ec +
5(t—1)¢Nw + §f¢sw + §(2-t-f)¢wc +<2--s-§)(1:--1)¢'\IC
+ T(2-5-8)¢gp + (2_s-§)(2-t-f)r,hP (B-33e)
where
2Bh -2Bh
hS(e N, e N_ 2) _ hN
t = 78Ry ~7BR and 2t R
hS(e -1) + hN(e -1)

After knowing all 9 nodal values on the smaller
rectangular local element, the 9-point FA formula (B-28)
derived previously can be applied to this smaller element,

i.e.,

® ] ® ]
op = Cnetne * Cyww * Cse®sE * Cswsw t Cee®ec t
Conar . + C + Conbl - C (B-3u)
wehwe * Cne®ne * Csc®c - Cp e -
Substituting the interpolated nodal values (B-33a) -
(B-33e) into eq(B-34) will give a 9-point FA formula for

local element of nonuniform grid spacing as follows
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1

op = & Pypdne * Pawénw * P

+b + Db +

se?sE swlsw * Prc®re

+ b + bgabge = bpg) (B-35)

Puctuc NcONC

G =1 - (?—S-S)ch - (Z—t-—t)CSC - (2-s-s)(2-t—t)Csw

Cyp * (s=D1)Cyy + (£-1)Cep + (s=1)(t-1)Cg,

sC + §(t-1)CS

NW W

tC + f(s-l)CS

SE W

stCSw

CEC + (S-l)CWC + \2-12--‘t)CSE + (S-l)(?-t‘-t)Csw

stc + s(z-t-t)Csw

NC + (t-l)CSC + (2—s-s)CNw + (t-l)(?-s-s)Csw

tCSC + t(?-s-s)CSw

p

where all of the FA coefficients CNE’ CNw etc. are defined

previously in eq(B-27) and (B-28) with h = he and k = hy
A 10-point FA formula for unsteady 2D convective

transport equation can also be obtained by further

substitution of g in eq(B-5a) into eq(B-35).
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Oyedye * Pywbnw * Pse®se * Psulsy *
p

n-1
Pec®ec * Pycuc * Pncfnc * Psetse * %bP¢P
- bpf,) (B-36)

where the nodal values without superscript denote those
values evaluated at nth time step while ¢;'l denotes the
nodal value of interior point P at (n-1)th time step.

For the cases hE >hw and/or hN:’hS’ the finite analytic
formula (B-36) can still be applied by simply opposite the
flow direction and rename the nodal points. These procedures
can be carried out easily in the numerical calculation,

details can be found in the subroutine of attached computer

program shown in Appendix D.

oundary

B-3 Finite Anal¥tic Formulation of Unsteady Two-Dimensional
Convective Transport Equation for Uniform Grid Spacin
Local erment with Piecewise-linear B d

Approximation

In this case, the unsteady 2D convective transport
equation is solved in the rectangular local element shown
in Fig. 4(a) using the same solution method given in
Sec. B-1, except that the exponential and linear boundary
function is replaced by the piecewise-linear boundary
condition. Following exactly the same procedures as those

described in Sec. B-1, the unsteady convective transport
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equation is simplified to be an equivalent elliptic PDE
(B-5) with constant inhomogeneous term, and the solution
for (B-S) can be further separated into a homogeneous
solution ¢ and a particular solution shown in eq(B-6),
such that ¢ satisfies the linearized homogeneous convective
transport equation (B-7) in the rectangular local element.
Instead of using exponential and linear boundary
approximation, a piecewise-linear profile is employed to
approximate the boundary conditions for all of the four
boundaries of the local element. For example, the north

boundary condition $N(x) is approximated by

a’NE - ‘5Nc
i e * —w®—— x, 0<xc<h
¢N(x) z 5 . (B-37)
~ NW
dne T ch, -h<x <0

The boundary conditions for the south, east and west
sides, i.e., $S(x), $E(y) and $w(y) can be similarly
approximated by piecewise-linear boundary functions. With
e—(Ax+By)

the transformation w = $ » the linear convective

transport eq(B-7) with piecewise linear boundary conditions

can be transformed to

w.. +w = (A2+Bd)y (B-38)
XX yy

W
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«Bk » =~ ~AXx -Ax
e L ¢Nce 1,

+(¢NC'¢NE Fe
w(x,k)twl(x)=
e-Bk [ $Nce‘AX+(¢NC‘¢W E’e-Ax]

kez _-A -A
[ égoe™ 4 (Bgembop) fe™,

w(x,-k):wz(x)=

Bk  ~ ~AX . = ~ X =Ax
e" " [ ¢Sce +(¢SC—¢SW) ]

-Ah [z =By, i _: .y _-By

w(h,y)=w3(y)=

-Ah ¢ ¢ By, i _3 y .~-By
e [ ¢Ece +(¢BC ¢SE)]<e 1,

Ah = -By.c: _3 Yy .-By
e [¢wce +(¢wc ¢Nw)]<e ],

w(-h,y)=wu(y)=

-~ _By
websw) £V,

Ah . ~ -By,,x
e [¢wce +(¢
Equation (B-38) can be solved by the method of

separation of variables as those used 'n solving equation

(B-lo)’ ioe-,

wix,y) = wN _— wE + ww (B-39)

where wN, ws, Wk and w" satisfy the same equations and
boundary conditions for problem (I) - (IV) in Sec. B-1.

Thus, the analytic solution for wN(x,y), for example, will

be
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wN(x,y) =
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A 51nhun(y+k) 51nAn(x+h)

[ ]
X

n=1

h

% [ wl(x) sinkn(x+h) dx

-h

' e ™ { oy [ 1 fh e~PXgina (x+h) dx] +
sinh §pnF NeT h h n

1 P Lax_.
)y [ I sinA_(x+h) dx] +
nl n

Coyr = One .

0
. . 1 -A .
(¢Nw - ¢NC)[ ;7 fh xe xsxn\n(x+h) dx]}

e'Bk th [eAh

-Ah. ~
— { - - M
sinh ?unk (Ah)?+(xnh)2 NC

- 2(AR) (A_h)
. - (-1)Ne~AD A

( - \) [ - —‘ry( A h +

e ™ (Ah)2+<xnh)‘ n A’

(A 2-(am?
o n sin
N 2 =

2(AR) (A h)
n cCOn 3 + -
Y(Ah)?+(xnh)7]7 [CAm S+ (y W) *

(AR 2-(a )2
-Coyw = e U - "y sin 3 -
(AW +(Anh) ]

?(Ah)(xnh) Ah

nu e
— =7 C°S 7 ! 2
(Ah) +(xnh) (Ah) +(xnh)

? (-th *

Q(Ah)(xnh)

) 1)
(Ah>7+<xnh>7

+

- ) +
A 2
+(xnh)

nn,

9

Y
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The local analytic solution (B-40) when evaluated at
the interior node P of the local element gives the finite
analytic algebraic relation between interior nodal value

wg and three neighboring nodal values at north boundary

N ® . .
wp = L An 31nhpnk SLnAnh
n=1
= m
= m§1 -(=1) Am sinhumk s n = 2m-1 (B-42)

Substituting Ay in eq(B-41) with n = 2m-1 into eq(B-42)

results in

m

1 2coshu k (Ah)t(xmh)2

Ah -Ah.~y
P (e ' -e )¢NC +

"Hnt~g

m

m 2 2
-(=1) Amh (Ah) -(Amh)

) [ e~AD +

by - &
NE  "NC (Ah)7+(xmh)7 [(Ah)2+(xmh)7i7

-(-1)™\ n
+ 2(1\)’1)e"Ah m

1 = (b - by [
[(Ah)2+<xmh)7i7 NW  NC

(amZ-(a_n)? an =(-1D™ h
- - e
[(AR)?

+

242 2 2
+(Amh) ] (Ah) *(Amh)

-(-1™\ n
m

2
[CAR) “+(2_h)

2(Ah) e

1}

Define
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m
w -(-1)"a h

_
m=1 [(AR)Z +(xmh)5]l

coshumk

2 2

@ (Ah) -(Amh)
= I
ms

7 T2 -
1 [(AR)® + (A h)"1° coshy k

) 1 ) Y RN
mh'(m°'2_)"’ um-—/A +B +)\m

- e~k &Nclf(Ah)(eAh-e'Ah)EQ-FZ] + Fyp L
1 -Ah -Ah ~ 1
7-(F2 +e El) + (Ah)e EQ] + °Nw[ 7( F,+

eAPE ) - (Ah)eAhE2] } (B-43a)

1

Similarly, 63, 6; and &g can be solved in terms of
the nodal values at south, east and west boundary respec-
tively

Bk , ~ Ah -
¢p = € { b5 [ Ah(e" -e

-Ah -Ah ~ 1
e E) ¢+ (Ah)e 521 **sw[ z(F,+e

(an)e*E, 1) (R-143b)

1 -Bk

-Bk ' 3 <
)52-F5] + ONE[ ?(Fife Li)

- e'Ah{$EC[(Bk)(eBk-e

(B PRES ] 4 Gl ersee™RED) - (BR)ePFEST)
(B-43c)
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39 = M prucl (BK) (ePFe™POE)-F)] +hyyl 3 (Fyre PNED
-Bk - 1 Bk Bk
+ (BRYe™ “E3) + §o [ 5 (Fise E}) - (Bk)e Ejl}
(B-43d)
where
® -(-1)™r'k
E} = & 5 g - » =1, 2
m=1 [(Bk) +(X;k) ] coshu&h
o (BK)2 - (A1) 2
Fp = 2 7 -y
A m=1 [(BK)“ + (A'X)“1° coshu'h
m m
) 1 . Y Y
and Ak = (k=T , um-/A + B+ Al

The 9-point FA formula can then be obtanied by

superimposed the four solutions (B-43a) - (B-u43d).

- _ N, 38 , E , W
¢P‘¢P+¢p*¢p+¢P
or
% = Cypdne * Cnwovw * Cse®se * Cswsw * Cec®ec *
Cuchic * Cne®ne * Csctsc (B-tu)
where
1, -Bk Ah Ah-BkE1*E1
- - - ] - -
CNE = f(e F,te F?) + e ( +Ah“2+ BkE ]
E, +E!
_ 1 Bk , AN Ah-Bk.F1*E1 .
Cy = 3(e  (FprelEY) ¢+ e ( - An E, + Bk E}]
E. +E!

1, Bk. ._-Ah -A!
Cop = 5(eP¥F se A Fy) ¢ e Ah+Bk( ’}T'l' + AhEy-BK E} )

1 Bk Ah Ah+Bk ¢ 1
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(e-Ah+Bk_e-Ah—Bk

Y(BK)E]}

* 2

+ 2

(eAh'Bk-e-Ah’Bk)(Ah)Ez’

SC

It is noted that there are 5 series summation terms
(E1+Ei), Ess Eé, P2 and Fé need to be evaluated, after
utilizing the analytic expressions (B-25a) and (B-26),
there are still three series summations E,, F, and Fé
needed to be calculated numerically.

For unsteady two-dimensional convective transport
equation with higher order correction term, a 10-point
FA formula can be derived by substituting eq(B-Sa) and
(B-6) into eq(B-u40)

= ———j;——— C + + C + C
% 7 T Ro (“netne * Cwwtnw * Csedse * Cswosu
P
T

R n-1
* Coctec * Cuctic * Cne®Ne * Csctsc t T Cpép

(B-u45)
- Cpfp)

where

1

Cp = PYIAYIY [ARCCyy * Cow * Cyc ~Cne - Csp =Cre)

+ Bk(CSE + C + C - C - C. - C

SW SC NE NC
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APPENDIX C
FINITE ANALYTIC FORMULATION OF

UNSTEADY THREE-DIMENSIONAL
CONVECTIVE TRANSPORT EQUATION

In this appendix, the unsteady three-dimensional
convective transport equation is solved in a local element
shown in Fig. 1.

Considered an unsteady three-dimensional convective

transport equation of the form of

¢

wx Oy F Oy, TR+ (UO) + (vO) + (up) T+ F  (C-D)

where ¢ may represent any one of convective transport
quantities, ¢j’ such as velocities, vorticities, temper-
ature or concentration. The coefficients u, v, w and the
source function F, in general, are functions of independent
variables x, y, z, t and dependent variables ¢j. R is a
constant parameter such as Reynolds or Peclet number.
Since in most of the engineering applications, the
analytic solution of eq(C-1) is not available due to
variable coefficients and/or nonlinearity, the finite
analytic numerical method is employed to derive the local
analytic solution.

In order to solve the convective transport equation
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(C-1) analytically in the local element shown in Fig. 6(a),

eq(C-1) is first rearranged to be

byx * Oy * by, T RCOL + UG, + Vo W) ¢ F 4

RI[ (u'¢)x + (v'¢)y + (w'¢)z] (C-2)
with

U(xayazsta¢j) = U + U'(anazata¢j)
v(x,y,z,t,¢j) vV + v'(x,y,z,t,¢j)

'
W(x’y’z’t"t’j) W +w <X3Y9zsts¢j)

where U, V and W are representative constant values in the
local element, for example, the velocities at the interior
point P or the area-averaged velocities over fhe local
element. u', v' and w' denote velocity components in the
local element that deviate from U, V and W and are
sufficiently small when compared with U, V and W. Therefore,
the term R [(u'¢)x +(v'¢)y +(w'¢)z] may be considered as
a higher order correction term.

Denoting two time steps t._y and t s one may approxi-

mately write eq(C-2) as

n n n-1
(¢xx-o¢yy-+¢zz) :R(¢t + UG +V¢y-+w¢z) +f (x’Y'Z*Qj)
(Cc-3)

where
f(x,y‘z,t,oj) =?(x,y,z,t,¢j) +R [(u’o)x'*(vw)y *(w'o)z]
(C-3a)
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Eq(C-3) can then be written as a linear op linearized
partial differential equation with constant coefficients

of the form of

¢xx * ¢y-y ¥ ¢zz s R¢t f 2A¢x ¥ 28¢y ¥ 2C¢z *

f“‘lcx,y,z,¢j) (C-4)

where A = %RU, B = %RV and C = %Rw are constants in the
local element.

It is noted that these constantsg may differ from one
element to another, so that the overall nonlinear behavior
is approximately preserved.

The linear or linearized partial differential equation
(C-4) can be solved analytically by similarp solution
methods outlined in Appendix A and B. In this‘study, the
hybrid FA method is employed to approximate the unsteady

So that the manipulation effort and computational

time can be greatly reduced. i.e.,

(C-5)

Moreover, the nonhomogeneous term fM-1 in eq(C-4) will be

approximated by a representative constant fP

procedures further. The linear or linearjzed PDE (C-y)

can thus be written as
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= (C-
¢ + ¢ + ¢zz 2A¢_, t+ 2B¢ + 2C¢Z t g (C-6)
with
= ._I‘ - -1 = -
g = T (¢P ¢P ) + fP constant (C-6a)

The constant nonhomegeneous term in eq(C-6) can be

easily taken care of by introducing a new variable

6

= ¢+ B ——— (Ax + By + C2) (c-7)
2(A° +R°+CY)

such that ¢ satisfies the homogeneous convective transport
equation

Bux * Bgy By T 288, + 2Bog ¥ 2¢}, (c-8)

in the local element.

Equation (C-8) with suitable boundary conditions can
be solved analytically by the method of separation of
variables. In this study, the problem is first solved for

a rectangular local element of hp = h,, =h, hy = h, = k,

W N S

hp = hg = 1, (see Fig. 6(a)) and is then extended to that

for the local element of nonuniform grid spacing of hE £

h hy, # hy, and hy # h

W> N S T B'

C-1 Finite Analytic Formulation of Unsteady 3D Convective
Transport Equation 1n a Tocal Flement of Uniform Grid

Sgacing

In previous formulations, the unsteady 3D convective

transport equation is simplified to be an equivalent
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elliptic PDE (C-6) with a constant inhomogeneous term g as
the source term representing higher order correction term
and unsteady term in the small local element. By further

subtraction of the particular solution given in eq(C-7)

from ¢, a homogeneous convective transport equation (C-8)
is resulted. For the homogeraous convective transport
equation (C-8) to be well-posed in a rectangular local
element of hE =z hw = h, hN = hS =k and hT = hB =1, boundary
conditions must be specified on six boundary surfaces at
X = th, y =tk and z = #1 respectively. In this appendix, the
exponential and linear boundary functions based on the
natural solutions of eq(C-8) is employed to approximate
the boundary conditions in terms of the 26 boundary nodes
available. For example, the boundary condition at top

surface can be approximated by

~ 2A 2B 2A

¢T(x,y) = ap, + aTz(e X1 (ePYo1) 4 aT3(e x-l)y +
aTq(esz-l)x + aTs(e2Ax-l) + aTs(ezsy-l) +
ApqgX + agngy + aqgXy (C-9)

where
ary ° 9
arp © 21 7= Uonpr * dywr * 8spr * dswr *
16 sinh®Ah sinh“Bk

“rc = 20gcr * duer * dyer * ¥sep) )
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1l
8k sinh?Ah sinhBk

[ 2coshBk (épap + dyer - 24p)

. ~ . L-BK
Cégpr + dgwr ~ 2éscr? - Coywr * OnET

- 2éyep? ]
gh sinh%Bk sinhAh [ 2coshah (gyer + dgor = 2épc)
Chywr * Ssur = 28er? - -Ah(¢NET *+ dspr

- 2$ECT) )

——2— Chyep * Byer = Zépe)

4 sinh”Ah ’

;‘;;i;YEI Coyer + dger = 28

77 Udper - Byor - COthARGELon + Byep = 28p0)]
ThstaAR [ 2c0shAh dno - (e AMbeer Ao

1.~ . - . . {
55 [ dyor — bgor - COthBk(dyen + dgop = 2dpc)d] ,

starmR [ 2008hBK b0 - (7 gy ¢ Surspeed

Thk sfhhih SInhBKk [e-Ah-BkaNET » e Bk&Nwr

e ANtk br ¢ eAN*BRg 4o + YcoshAh coshBk §n. -

2coshAh ( eBk$SCT -BkaNCT - 2coshBk ( eAh$WCT
.-AR

+

6ECT




ORIGINAL PAGE 1S
OF POOR QUALITY 335

The boundary conditions for bottom, east, west, north
and south sides, i.e., $B(x,y), $E(y,z), ou(y,2), ¢y (%,2)
and $S(x,z), can be similarly approximated by exponential
and linear boundary functions in terms of the 9 nodal
values available on each boundary.

With the introduction of a change variable

b= w eAx+By+Cz (C-10)
the convective transport equation (C-8) and boundary

conditions (C-9) etc. are transformed to

_ 2. .2 .2
Wy + wyy + W, = (A“+B°+C") w (C-11)

and

wix,y,1) = wl(x,y)

_—— [aTle-Ax.By+aTz(eAx-e-Ax)(eBy"e—By)'*aTS(eAx

-e-Ax)ye'By-+a (eBY_ e BYyxe 8%, 4 e~BY (eAX_g-Ax,
T4 TS

+aT5e-Ax(eBy-e-By)-+aT7e-By(xe-Ax)-+aT8e-Ax(ye-By)

+apg(xe ™) (ye Yy (C-11a)

wix,y,-1) = wz(x,y)

€lpa . eAx-By,,

B1 B2( eAx-e-Ax)(eBy-e'By) +a

- Ax
= e 83(e

e-By(eAx_e-Ax)

-e'Ax)ye'By-GaBu(eBy-e'By)xe'Ax~+a

BS

e .5 s e ~
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+aBee_Ax(eBy-e'By)-+aB7e-By(xe-Ax)-faBBefo(ye-By)
+aBg(xe'Ax)(ye-By)] (C-11b)

w(h,y,z) = w3(y,z)

_ _~Ah -By=Cz By _-By Cz _=~Cz By
= e [ ag® -faEz(e -e Y(e " “-e )-vaE3(e

-Cz

e (eBy-

e BYyze"C% 4 g (ecz-e-cz)ye'ay-+a e™BY)

EY ES

“BY(eC%.e7C%) 4 a e-cz(ye—By)-+aE8e°By(ze'Cz)

€ E7

* e

+aE9<ye‘By)(ze‘Cz)J (C-11c)

w(-h,y,z) = wu(y,z)

_ _Ah -By-Cz By _-By Cz -Cz By
= e [aw1e +aw2(e -e Y(e"“-e )+aw3(e

e BYyz2e7C% 4 a (eCz_e-Cz)ye-By_*awse—Cz(eBy_e—By)

Wi

+awee‘By(eCZ-e'Cz) +aw7e'cz(ye‘BY) +awse'By<ze“Cz)

+awg(ye‘By)<ze'Cz>] (C-11d)

w(x,k,z) = ws(x,z)

-Bk -Ax-Cz Ax -Ax Cz -Cz Ax
e [aNle +aN2(e -e Y(e “-e )-+aN3(e

-AX Cz Cz Ax -Cz( Ax
e

- -Cz - ~Ax
-e Yze +aNu(e -e ) xe * ayge e )

-Ax(eCz_e-Cz) +a e'cz(xe"Ax) +a e-Ax(ze'Cz)

+4a3,.e N8

N6 N7

(xe P*y(ze"C%)] (c-1le)

*ang
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wix,-k,z) = ws(x,z)

= eBk [ a e-AX-CZ +a ( 'eAx_e-Ax)(eCZ_e-Cz) +a

Ax
$1 52 (e

S3

- e'Ax)ze'Cz-+a (ecz-e'cz)xe'Ax~+a 'e-Cz(eAx_e-Ax)

St SS

e'Ax(eCZ-e'Cz) +a e'Cz(xe‘Ax)-+a e'Ax(ze“Cz)

tagg S7 S8

+a (xe-Ax)(ze-cz)] (C-11f)

S9

Applying the method of superposition for linear
equation, this problem can be solved analytically by
further dividing it into six simpler problems with each
of them having only one nonhomogeneous boundary condition.

i.e., w = wT + wB + wE f e wN + wS and

Problem (1)

T ,.T , T _ ,.2..2..2. T )
Wew * wyy tw,, = (AT4B74CT) w (c-12)
T -
wilx,y,1) = wl(x,y) (C-12a)
wT =0 at x =th, y =tk and z = -1 (C-12b)
Problem (II)
B , B , B _ (,2,22,.2, B ,
Wose t wyy tw,, = (A"+B +4C) w (c-13)
B -
w (x,y,-1) = Wy (x,y) (C-13a)

wB:0 atx=th,yzi:kandz =1 (C-13b)
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Problem (III)

E ? E

E = alm?ech
wE(h,y,z) = w3(y,z)

E 2o

w'o= at x = -h, y = +F and = = ¢1

Problem (IV)

q
(A?+B‘+C2) w?

ww(—h,y,z) = wu(y,z)

ww = at x = h, y =tk and 2z =1

Problem (V)

N A N
+ W, T (A"+B°+C°) w

N

N
w (x,k,z) = ws(x,z)

wN = 0 at x =+ h, y =

Problem (V1)

2 S

= (A2+B +C2) w

ws(x,z)

at v = +h, y = k and z = ¢1

(C-1u)

(C=-14a)

(C-14b)

(C-15)

(C-15a)

(C-15b)

(C-19%)

(C-16a)

(C-16b)

(C=-17)

(C=17a)

(C-17b)
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Problem (I) - (VI) can be solved analytically by the
method of separation of variables. For example, by assuming
wT(x,y,z) = X(x)Y(y)Z(2) and substitutirg it into eq(C-12)

of Problem (I), the variables are separated

X® oooy" v 2.2
Tty trc (A“+B°+C") (C-18)
The solution for equation (C-18) with homogeneous
boundary conditions (C-12b) is known to be
T @ o
w(x,y,z) = % I A sinxm(x+h) sinun(y+k) *

m=1 n=1 mn

sinhymn(z+l) (C-19)

LLLE - nn _ /2. 52, 7. .2
A *7h* ¥n T3 and Ymn"'/A +B+C +)‘m"“n

where eigenvalues are obtained by applying the four
homogeneous boundary conditions at x =th and y = tk in

eq(C-12b). Applying the boundary condition (C-12a) at top

boundary

wT(x,y,l) z wl(x,y)

©o <0

= m§1 n£1 Ann sinh2y_ 1 51nxm(x+h) sxnun(y+k)

(C-20)

The coefficients Amn can then be obtained by invoking
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the orthogonality condition of sine series, i.e.,

k h
Ann ° B s%nh?y T ;s wl(x,y)sinlm(x+h)sinun(y+k)dxdy
mn- -k -h

-cl
- e L.
B Slnh?“nni( 271%mn1 ' 3r2®mn2 * 373t Ippg ¢t

he +

+
a mn7

aTuh e e

mni TS5 " mnb5 * a'I'SemnG + a9

apghk enng * apghk e o)

k h

I/
-k -h

e -1 e-Ax-By

mnl = BR sin%n(x+h)sinun(y+k) dxdy

kK h
I (eAx-e-Ax)(eByue"By)sin)\m(wfh)*
-k <h
sin;h(y+k) dxdy
k h

€ n3 =;i7 f% f£ (eAx-e-Ax)ye'BysinAm(x+h)sinun(y+k)dxdy

-e-By)sinxm(x+h)sinun(y+k) dxdy

)sinkm(x+h)sinun(y+k) dxdy
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1 XM ax, _-By
e = ;] (ye )sinA_(x+h)siny_(y+k) dxdy
mn8 hk? “x -h m n
=—;L—-fk fh (xe'Ax)(ye'By)sinA (x+h)siny_(y+k)dxdy ?
mn9 h2k2 X -h m n , ;

When the local analytic solution (C-20) is evaluated
at an interior node P located at the center of the
rectangular local element, it gives an algebraic equation
relating the interior nodal value to its neighboring

nodal values at top boundary surface as

wg= wT(O,O,O)

® o«
=m§1 nfl A, sinhy .1 51nAmh sinp k (C-22)
Since
imAh s osinBIs meee 1, 2, 3
sin = sin = p=1, 2, 3,..
m z -(-1P |, m=2p-1
. K . nmw o n=2q 1. 2. 3
siny = sin = q=1, 2, 3,..
n 77 (-1, n=2q-1

Eq(C-22) can be further simplified by letting m = 2p-1 and

n = 2q-1, such that

T

~T P*q .
Wy = L I (-1) A__ sinhy__1 (C-23)
I S Y Pq Tpq
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E where

-C1

e
Abq sInh2Y T Capiepq1 * 312%pq2 * 213K €pgs3 *

h e

apyh eoy * argeoas * ArgSpge *oAryh epg7 *

aT8k equ + aTghk epq9) (C-23a)

By performing a set of integrations similar to eom>

e n and e, ~shown in Appendix B as follows

erp = % f£ eAx sinxp(x+h) dx
A h
E = 2p 5 (eAh+e-Ah) (C-24a)
-3 (Ah) “+( ) _h)
3 P
1 h -Ax .
elxp = ;? {h xe 31nxp(x+h) dx
2Ah)_h ah an. A heefhoe™ih
= Py (e ™) - By 7
[ (Ah) +(Aph) ] (Ah) +(Aph)
(C-24b)
e =1 fh “AX Sina_ (x+h) dx
2xp ~ h “h e S1nA,
A _h
= 72 3 (eAh+e-Ah) = egy (C-2u4c)
i (AR)“+(x h) P
k
1 By _.
= = +
equ X {k e sxnuq(y k) dy
u_k -
- q (eBK4e~BK) (C-2ud)

(Bk)7+(uqk)7
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k

_ 1 -By .
elyq = ;7 {k ye 51nuq(y+k) dy
2Bk p_k u k(ePX_e B,
) q (eBK4oBK q
= 3 77 (e te ") 3 2
[(BX) +(u _X)°] (Bk) +(u_Xk)
q 9 (c-2ue)
1 k -By
e == [ e sinuy (y+k) dy = e (C-2u4f)
2yq ~ Kk I, 'Y Y 7 oyq
where
_ 1 _ 1l
Aph = (p - F)m , uqk = (q - )7
The double integrations e » € etc. can then be
pal’ "pq?

expressed in terms of the products of eqr € and e, in x

and y direction respectively. i.e.,

Ah__=~Ah Bk _-Bk
( + )( Y h) (k)
e e e e Ap M

e €5 rn® -
pql ~ "2xp2yq {(Ah)2+(xphi71[(ak)2+(uqk)?]

epq2 z (e2xp-80xp)(e2yq°80yq) = 0
epq3 = (ezxp-eoxp) e1yq =0
°pav = (2yq %0yq’ Cixp * °
epqs = (e2xp-erp) e2yq =0
°pgs = ‘2yq %0yq’ Caxp 7 °

2an(ePN e ANy (eBK4e=BXy () h) (u ko

i p
e S
pa’ [(Ah>7+<xph)737[<ak)7+(qu)7]

RTINS T S T S S VN R I ARy

ik
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(eAh

—e ANy (BRL By (A my(u 10
) 7 7 L %’ ® €1xp°2
[(Ah) +(Aph) 1 (Bk) +(uqk) ] Xp <yq

2Bk (eAlye ANy (oBRL=BXy 3 Hy(u x)
= P q

e
Pqsd [(Ah)2+<xph)7)[<ak)2+(uqk)7]2

(eAh+e'Ah)<eBk-e‘Bk)(xph)(uqk)

= e e
[(Ah)7+(xph)2][<Bk)7+(uqk)2] lyq 2xp

uAth(eAh+e'Ah)(eBk+e‘Bk)(Aph)(uqk>

[(Ah)2+(Aph)?]2[(3k)2+(uqk)2]2

quQ

2Ah(eAh+e‘Ah>(eBk-e'Bk><Aph)(qu>

[(Ah)2+(Aph)7]7[(8k)2+(uqk)7]

(oAh_,-Ahy Bk, -Bk,

2Bk te (A h)(p k)
P q

+

[(Ah)2+(Aph)z][(Bk)2+(uqk)?]2

(eAh-e-Ah)(eBk-e'Bk)(}Ph)(uqk)

= e e
[(Ah)2+(Aph)zl[(Bk)2+(uqk)2] 1xp lyq

The local analytic algebraic equation (C-23) can

hence be simplified as

T -c1 T % (-1nP*
bp = e pfl qfl Zeoshy 1 (apjepqr * 3r7M epq7 *

Tghk epq9)

aTsk epq8 + a
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_ -C1 Ah, -Ah,, Bk, -Bk,.z Ah
z e {aTl(e t+e Y(e " T+e )E11 + (aT7h)[2Ah(e

+e.Ah)(eBk+e.Bk)Bz - (eAh—e°Ah)(eBk+e-Bk)El ] +
21 11
(aTBk)tzsk(eAh+e‘Ah)(eBk+e‘Bk)z§2 - (ePPie~ANyy

(eBk-e°Bk)E§1] + (aTghk)[HAth(eAh+e-Ah)(eBk+

e_Bk)Eg2 - 2Ah(eAh+e_Ah)(eBk-e-Bk)E;1 - QBk(eBk+

e.Bk)(eAh-e_Ah)Ei2 + (eAh-e-Ah)(eBk-e-Bk)Eill}

(C-25)
where
| . - _1yP*a
: T ( ”T(Hf§“£d 1
‘ 13 7 521 q=1 20(am 2+ m 21300 24 (u )21 coshy_ 1
P q Pq
i, j = 1,2 (C-25a)

Substituting apys apgs Arg and aqq obtained from
eq(C-9) into eq(C-25), the finite analytic algebraic

equation becomes
~T _ -C1 r A ~ _
¢p = e { (ucoshAh coshBk E11)¢TC + [2coshAh e

-Ah. Ah -~ .
(e " dpcpte dycp) ] ( YAh cothAh coshBk E,y -

z . -Bk4 Bk .
2coshBk Ej,) + (2cosh8koTC - (e Toyorte OSCT)]

- 2coshAh Ezl) +

(4Bk cothBk coshAh EZ 1

12

-Ah-Bk- Ah-Bk ~Ah+Bk Ah+Bk+
(e e dnwrte dsprte dswr?

Onert
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Bk -
e 9507

bcoshAh coshBk $TC - ZCOShAh(e-Bk$NCT*

-Ah Ahs
2coshBk (e dporte ¢wCT)]( 4AhBk cothAh cothBk *

Z

57 - 2Ah cothAh EZ. - 2Bk cothBk EZ, +EZ. )}

E 21 12 Y Ena

_ z z A
= (El1 - 2Ah cothAh E21 ~ 2Bk cothBk E12 +

z -Ah-Bk-C1 ~
4AhBk cothAh cothBk E22)(e ¢NET +

Ah-Bk-C1~
e +

T e-Ah+Bk-Cl~ eAh+Bk-—C1~ )

dsgr * € SWT

+ 4Ah coshAh cothAh(E;I-zak cothBk Egz) *

-Bk-C1l~ Bk-Cl~ z
(e $yerte ¢SCT) + UBk coshBk cotth(E12

n z -Ah-Cl~ Ah-Cl~
- 2Ah cothAh B22)(e dperte ¢WCT) +

(16AhBk coshAh coshBk cothAh cothBk EZ,)e 1§ .
(C-26a)

Similarly, the finite analytic solutions 62, 6?, 63,
$g and 53 of Problem (II)-(VI) can be obtained in terms of
the nodal values on the bottom, east, west, north and

south boundary respectively.

B _ pA 2 z
¢p = (E11-2Ah cothAh Ezl-ZBk cothBk E

12+uAth cothAh *

z -Ah-Bk+Cl~ Ah-Bk+Cl~
cothBk 82?)(9 ¢vepte dnwet

~Ah+Bk+Cl~ Ah+Bk+Cl-~
e °SEB+e OSWB) + 4UAh coshAh cothAht®

s ) Y
-7 . . . S e e e R T e WO
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-Bk+Cl~ Bk+Cl~

+

Y(e -Ah+Cl~

4Bk coshBk cotth(E -2Ah cothAh EZ ¢rcB

22

+eAh*C1$WCB) + (16AhBk coshAh coshBk cothAh cothBk

2 C1~
E22 bgc (C-26b)

+4BkC1l cothBk *

<E _ ,.x ' x ' x
@P- (Ell-QBk cothBk E21-2C1 cothCl El?

)(e Ah-Bk-Cl$ +e-Ah+Bk+C1$ +

coth(Cl E NET SET

22

-Ah Bk+Cl4 -Ah+Bk+Cly

¢NEB ¢SEB) + 4Bk coshBk cothBk

) (e -Ah-Cly ~Ah+Cl~

Sccrte *

(821-2Cl cothCl EX ¢ECB ;

22

-Ah-Bk~

4C1 coshCl cothCl(EY,-2Bk cothBk Ey,)(e dneC ;

‘Ah*Bk¢SEC) + (16BkC1 coshBk coshCl cothBk cothCl

i X -Ah+
E22) e (C-26c)

~W _,.x X X . *
¢p -(E11—2Bk cothBk E21-2CI cothCl E12+NBkCI cothBk

)(e Ah-Bk-C1~ Ah+Bk-Cl~

cothCcl EX ONWT SWT

22 +

Ah Bk+Cl~ Ah+Bk+Cl~
¢NWB ¢SWB) + 4Bk coshBk cothBk *

(E -2C1 cothCl E

422)( Ah Cly Ah*Cla +

¢ucTte WwCB’

4C1 coshCl cothCl(E},-2Bk cothBk EX,)(eAN-BK

22 Snwc?

S T ST AR RIS LT TR TR T
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eAh*Bkaswc) + (16BkC1l coshBk coshCl cothBk cothCl

Ah~

X
Epp) e e (C-26d)

- y . y -y
¢P = (E11 2Ah cothAh E12 2Cl coth(Cl E

#
21+l+AhC1 cothAh

+eAh-Bk-C1$

cothCl Egz)(e-Ah‘Bk-Cl$ +

NET NWT
‘—~Ah-Bk+Cl~ Ah-Bk+(C1

e ¢NEB+e $NWB) + 4Ah coshAh cothAh
-Bk-C1l~ e-Bk+Cl~

®Ner * Ovep) *

y _ y
(E12 2C1 cothCl E22)(e

-Ah-Bk«

y y
4Cl coshCl cothCl(Ezl-ZAh cothAh E22)(e ¢NEC

+eAh'Bk$ch)'+(16AhCl coshAh coshCl cothAh cothCl

y -Bk~
E22) e ¢NC (C-26e)

- y _ y _ y 'y
¢P = (E11 2Ah cothAh El? 2C1 cothCl E21+MAhCl cothAh

COthCl E¥2)(e-Ah+Bk_Cl$ + eAh+Bk-C1~ +

SET SWT

~-Ah+Bk+C1~ Ah+Bk+C1~
e ¢SEB+e ¢SWB) + 4Ah coshAh cothAh

(EY,-2C1 cothel EY,) (ePK=C15 Bk+Clg s

Oscrte %scp?

y _ y ~Ah+Bk~
4Cl cosh(Cl cothCl(E21 2Ah cothAh E22)(e ¢SEC

+eAh+Bk$gwc)-*(16AhC1 coshAh coshCl cothAh cothCl

y Bk~

where
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™ 0 - q+r
Lo (-1) (uqk)(&rl)

13 7 451 pe1 2[(Bk)?+(uqk)7]1[(01)2+(érl)fljcoshyqrh

f ® (-DPT (A nCs )
3 Y. = © I » ——F i, — ;
3 13 p=1 p=1 20(C) 48 D) 1ML (AR “4+(a W) coshy Kk ﬁ
. r P pr ,
i, 3 =1, 2 3
and ;
Grl = (r - %) m
) 77 7. 2. 7
Yoo / a%+B?4c +ug e
) 7 7 2.7 2
Ypr = w/A +B°+C +Ap+5r

The finite analytic algebraic equation for the
homogeneous convective transport equation (C-8) with
exponential and linear boundary condition (C-9) etc. is
then obtained by superimposed the six solutions (C-26a) - ]

(C-26f) of the linear problem (I) - (VI). i

aT o 3B s iE . W, N, S, X gy
9p = @5 + &p + 5 + 5 + §p + $p = [-2C1 cothCL(T], +EY))

X ,nY .02 y _ y z

+(E11+E11+E11) 2Ah cothAh(E12+E21) 2Bk cothBk
X 2 z a

(E21+E12) + 4UAhBk cothAh cothBk E22 + uBkCl

cothBk cothCl E;z + 4AhCl cothAh cothCl Eggl ®

N ity L kb

-Ah-Bk-Cl+ Ah-Bk-C1+ -Ah4Bk-C1

(e dver t© w * € dser
Ah+Bk- C1 ~Ah-Bk+C1+ Ah-Bk+C1

te bgur * © e * d\we
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e—Ah+Bk+Cl~ AH+BK+CL~

* $spp * € ®swB

) + 4Ah coshAh *

2

z
21 - 2Bk cothBk E

22

y
cothAh [(E12 +E

y Bk-Clx -Bk-Cl+
2C1 cothCl Ej, 1 (e dgo7t © dyor *
Bk+Cl~ ~-Bk+C1l~ %
e ¢SCB-+e ¢NCB)-+NBk coshBk cothBk
z

[CE z

+E§2) - 2Ah cothAh E,, - 2C1 cothCl E§2 ]

X
21
(eAh-Cl~ ~Ah-Cl+ Ah+Cly

-Ah+C1
dwer * © $per * © dwe * © $

ECB)

X y y
+ 4C1 coshCl cothCl [(E12'+E21) - 2Ah cothAh E5,

-Ah-Bky -Ah+Bk6

X
- 2Bk cothBk E?Q)(e ¢NEC-+e

SEC

Ah-Bk+ Ah+Bk~

¢ch-+e ¢SWC)-+(16Ath coshAh coshBk

+ e

YA -Cl~ Cl~y *
cothAh cothBk Es5s ) (e ¢TC +te d’BC) + (16BkCl

coshBk coshCl cothBk cothCl E§2 )(e-Ah&;EC +

eAh$wc)+ (16AhCl coshAh cothAh cothAh cothCl Egz)
-Bk~ Bk~

(e ¢NC-+e ¢SC) (Cc=27)

y z _ X z _ X y

E1p *Egys EB = E5y +Epps EC = Byt B9y

2Ah cothAh ( EA), FB = 2Bk cothBk (EB)

2C1 cothCl \ EC)
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s ¢ GA = 4BKCL cothBk cothCl EX,
& GB = YAMC1 cothAh cothCl EY, |
GC = YABk cothAh cothBk EZ, |
and

- x y 2y - -
P = (E11+E11+E11) FA-FB-FC+GA+GB+@aC

QA = 2coshAh(FA - GB - GC)
, QB = 2coshBk(FB - GA - GC)
Qc = 2coshC1(FC - GA - GB)
| RA = U4coshBk coshCl(GA)
) RB = bcoshAh coshCl(GR)

RC = UcoshAh coshBk(GC)

Then the 27-point finite analytic formula (C-27) can

be summarized ag follows

-~

%p = CNET$NET"CNWT$NWT'*CSET$SET'*CSWT$SWT"CNEB$NEB +
CNWB$NWB'*CSEB$SBB'+CSWB$SWB * Cserser * Cyorbyer *
Cscsascs'*CNCB$NCB'*CWCT$wcT"CECTagcr"cha$wcs *
CBCB‘S}:CB'*CNWC‘SNWC'*CNEca’NEc'*Cswc$swc"cszc$szc+

CEc¢Ec'*chawc'*chanc"Csc¢sc"CTC$TC'*CBC$BC

; (C-28) 1
' 26 i ;
- i Crb®nb (C-28a)

where the subscript "nb" denetes the neighboring nodal
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points to node P, and the FA coefficients C,p are given in

the following

: Cupp = e ANBKCL 5 o ANBR=CL g _\
Capp = e AYBRCL p o ARSBK=CL
s Cypg = PPTBRICL b oo eARTBRICL '
i Copg s e MNTBKICL p o L ANSBRICL
Coop =€t (@A), Cuop e T (am,
CSCB =eBk+Cl (QA) CNCB :e-Bk+Cl (QA),
| Cyer = eAP-Cl (0py | Cper = e AR-Cl (),
!
Cucp = MO (QB) L cpp = e AMHCL (g,
Chwe =& 2K QO ez e PR Qo
i Coue = ™K Q0 L gy = e ANYER (qoy,
‘ Cpe = e A (ra) , Cuc = eAl (ra) ,
Cye = e~BX (rp) . Cge® eBX (rB) ,
e = eCL (RC) ., Cge=ett (RO ,

There are 12 double series summation terms Ezj, E{j

and E?j’ i, =1, 2 need to be evaluated in the calcu-

lation of the 27-point FA formula (C-28). However, analytic
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expressions similar to those derived in Appendix B may be
employed to reduce the numerical calculations needed.

It is known that ¢ = 1, ¢ = Bx-Ay, ¢ = Cx-Az, ¢ = e 28X
etc. are particular solutions of eq(C-8), and all of them
can be adequately represented by the exponential and
linear boundary functions on six boundary surfaces. Thus,
the FA algebraic equation (C-28) should recover all these
exact solutions in the following manner.

(a) $ =1

Since 5:1 satisfies the convective transport equation
(C-8) and can be represented by exponential and linear
boundary functions with six nonzero coefficients aqq = ap)
= apy Tay; Tay Tasy C 1, it should satisfies the algebraic
equation (C-28) also. By substituting this exact solution
into eq(C-28), an analytic expression of E§1-+Ey + EZ, can

11 11
then be obtained

~

¢p =1

8coshAh coshBk coshCl P + ucoshBk coshCl (QA) +
4coshAh coshCl (QB) + tcoshAh coshBk (QC) +

2coshAh (RA) + 2coshBk (RB) + 2coshCl (RC)

X ¥y z
8coshAh coshBk coshCl {[(E11+-Ell4-511)-FA-

FBE-FC+GA+GB+3C) + (FA-GB-GC) + (FB-GA-
GC) + (FC-GA-GB) + GA + GB + GC}

X y z
8coshAh coshBk coshCl (E11 +Ell'+211)

hence
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X y z 1 _
E11 *E11 *Ey1 °  §5osShAR coshBk Goshel (C-29)

(b) ¢ = Bx-Ay
Since ¢ = Bx-Ay is an exact solution of eq(C-8) and
can be represented by exponential and linear boundary
functions with 12 nonzero coefficients aqy T apg T ayy =

-Bh Y a

aS7=B, aT8=a88=aE8=aws=-A, aE1=Bh, aw1= le

-Ak and agq = Ak, it should satisfies the 27-point FA
formula (C-28) also. By evaluating this exact solution at

27 nodal points, eq(C-28) becomes

-~

¢p = 0 = (Bh-Ak)(cNET+CNEC NEB) + (-Bh- Ak)(c Nt
ch NWB) + (Bh+Ak)(CSET CSEL SEB) + (~Bh
+Ak)(CSWT cSWC ) + Bh(CECT+CEC+CECB)
Bh(C +C.__+C ) -Ak(C +C ) + Ak(

WCT “WC "WCB NCT NC NCB

Cser*Cse*Csen?

_ _ : X y
= 2coshCl { -4Bh sinhAh coshBk [(E1 +E11-+E11
FA-FB-FC+GA+GB+GC) + (FC-GA - GB) + (FB
-GA - GC) + GAJ] + 4Ak coshAh sinhBk [(Ex
y
E11-+E11-FA FB-FC+GA+GB+GC) + (FC-GA -
GB) + (FA-GB-GC) + GB]}

Applying the analytic expression (C-29), another

analytic expression can then be obtained
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kz(EB)-hz(EA) - Ak coshAh sinhBk - Bh sinhAh coshBk

16AB cosh’Ah cosh’Bk coshCl

(C-30)
) h .2 1 tanhBk
or EB = (K) (EA) + 16coshAh coshBk coshCl : Bk
_(hy2 tanhAh 4 (c-30a)

k Ah
(c) ¢ = Cx-Az
When the exact solution 6 = Cx-Az is considered, an

analytic expression similar to eq(C-30) can be obtained as

follows
_h .2 1 tanhCl
EC = (T') (EA) + 16coshAh coshBk coshCl [ C1
h .2 tanhAh
- (I) —Ah ] (C-31)

It is noted that there are still some exact solutions,
2A% - 2Ax+2By+2Cz .
¢ = e y sy ¢ °

’

for example, ¢ = Cy-Bz, § = e
(Bx-Ay)e2cz etc. may be employed, however, the results are
either linearly dependent to or the same as eq(C-29) thru
(C-31). Thus, there are still 4 series summations EA, E?Q,
Egz and E;Q needed to be evaluated numerically.

When the unsteady 3D convective transport equation is

considered, a 28-point FA formula will be resulted by

substituting eq(C-7) into eq(C-28a), i.e.,

. 26 Ax
¢p = 9p * § Cob L onp *
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where (xnb‘ Yob? an) 1s the position of each neighboring

node at Cartesian coordinate, and g contains the infor-

n=-1
P

Substituting the expression of g of eq(C-6a) into

mation from previous time step ¢

eq(C-32), the 28-point FA formula for unsteady 3D

convective transport equation becomes

1 26 R n-1
bp = i_:(_S_C__( % Cablnb * TCp ¢p - Cpfp) (C-33)
TP

with
26 (Axnb'*Bynb'*Cznb) Cnp (C-34a)
VY ' i

C T -
'2(A2+B +CY)

g
P 1

) 2 12 ] { Ah tanhAh + Bk tanhRk + C1 tanh(Cl

2(AT+B +CY)

- l6coshAh coshBk cosh(l [(Ah)Q(EA) + (Bk)z(EB)
+ (CLY(EC) 1) (C-34b)

C-2 Finite Analytic Formulation of Unsteady
3D Convective Transport fquation in a
Local Flement of Nonuniform Crid Spacing

In previous Sec. C-1 formulation, the local analytic
solution is derived in terms of the 26 boundary nodes
which are equally spaced on the boundary of the local
element of uniform prid spacing h, k and 1 in x, y and z

direction respectively. For local element of nonuniform

grid s acing hE‘ hw. hN, hS‘ hT and hB‘ a simple
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generalization based on FA solution for uniform grid can
be made to obtain the finite analytic algebraic equation.

Details of the procedures, which is a generalization of

two-dimensional case described in Appendix B, will be

5 ,
outlined in the following. % :
. f
Consider the case hE <hw, hN <hS and hT <hB shown
in Fig. 6(b) as an example, a smaller rectangular

parallelepiped of width 2h depth 2h height 2h,, and

E? N? T
point P located at the center can be drawn. The same

P TP P P W RN TP, W vy

exponential and linear interpolation function given in

Appendix B will be employed to obtain the interpolated
* #*

nodal values ¢NWT’ ¢WCT etc. on smaller rectangular

element in terms of those known nodal values on larger

T N T o O T T

local element, so that the error introduced by inter- ; ;

polation will be minimized. i.e.,

® - -
Ot T (S-Dypp *+ 8dyup + (2-5-8)oy ..

i
¢;CT = (s-l)q)ECT + §¢WCT + (2-s—§)¢TC é
¢;wc = (s=Dbypc + Soypc * (2-5-8) ¢y, :
¢;C s (s-l)d;EC + §¢wc + (2-s-§)¢P ;
¢;ET = (t-1)¢NET + f°SET + (2-t-f)¢ECT ;
%scr = (t-Déyer * Togep *+ (2-t-Dlog, ;
°;Ec = (t-1)om:C + E‘szc + <2-t-€)oEC %
O;C = (- ¢ Fog, (2-t-D)o, E




*NEB
¢NCB
*
®ECB
¢pC

NWB

3
Pwes

®
¢sER

%
®sca

[
®SwT
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(r-Déypr * Toypp * (2-r-T)pype
(r-D¢yer * 5¢NCB + (2-r-5)¢NC.
(r-1)¢ECT + 5¢ECB + (2—r-f)¢EC
(P-l)¢TC + §¢BC + (2—r—f)¢P

(s—l)(r-l)¢NBT + (s-l)f¢NEB + (s-l)(2-r—f)¢NEC

+ §(r—1)¢NWT + SToyupg * 5(2-r-Tloyun *+ (2-5-8)

(r-Doyop + (2-5-8)Toy0p * (2-3-5)(2-r-§)¢NC
(s=1)(r-Ll¢pap + (s=Drppop + (5-1)(2-r-TI¢p,
+ %(r-1>¢WCT + STy g * B(2-r-Tlo . + (2-s-B)%
(r-D)¢pe + (2-s-E)F¢BC + (2-5-8)(2-r-T)¢,
(£=1)(r-Dgypp + (£-1DFypp + (£=1)(2-r-Bgy .
+ f(r-1)¢SET + E;¢SEB + f(?-r-f)¢SEC + (2-t-%)
(r-L)¢pop * (2-t-D)F¢pop + (2-1:-1':)(2-r~-f*)¢,gC
(t-D)(r=-Dpyap + (t=DTgyp + (£-1)(2-r-Fl¢y,

+ Br-Dpgop + EE¢SCB + E(z-p-§)¢sc +(2-t-%)*

(r-V¢p. * (2-t-E)5¢BC + (2-t-€)(2-r-§)¢p

(5-1)(t-1o,pp * (s'l)E¢GET + (s-l)(z-t-E)¢ECT




* -
bswc

*®
$swB
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+ §(t-1)¢NWT + §f¢SWT + §(2—t-f)¢wcT + (2-8-58)
(t-Ddyer * (2-s-§)E¢SCT + (2-s-§)(2-t-€)¢TC
(s-l)(t-1)¢NEC + (s-l)f¢SEC + (s-l)(?-t-f)oEC
+ §(t-1)¢ch + §€¢ch + §(2-t-€)¢wc + (2-s-8)
(E-1)¢NC + (2-s-§){¢sc + (2-s-§)(2-t-€)¢P
(s-1)(t-1)(r-1) dypp * (s-1)(t-1)§¢NEB + (s=-1)
(t-1)(2-r-5)¢NEC + (s-1)(2-t-E)(r-1)¢ECT +
(2-s-§)(t-1)§¢NCB + (s-1)(2-t-€)(2-r-5)¢EC +
(2-s-§)(t-1)(r-1)¢NCT + (2-s-§)(t-1)x‘~¢NCB +
+(2-s-§)(t-1)(2-r-§)¢NC + (2-5~8)(2-t=-t)(r-1)*
Opc * (2-s-§)(2-t-f)f¢BC + (2-8-8)(2-t-t)(2-r-

§)¢p + (s-1)E(r- + (s-l)ffosgB + (s=1)t*

L égpr
(2—r-r)¢SEC + s(t-l)(r-l)oNWT + s(t-l)r¢NWB +
s(t-l)(?-r-r)¢ch + St(r'1)¢SWT + sfr¢sw3 +

§(2-t-f)(r-1)¢WCT + §(2-t-f)i¢wcB + §(2-t-%)(2-

r-5)¢wc + (2-s-§)€(r-1)¢sCT + (2-s-§)fi¢SCB +

(2-s-§)¥(2-r-§)osc + §€(2-r-§)¢swc (C-35)
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where
2Ah -2Ah
hyle ©T+e  F-2) ) hg
s = ZAR “2Ah, > 5 =5 Ry
hw(e -1) + hE(e -1)
2Bh -2Bh
h_ (e N e N _ 2) h
t = S f:t_ri
2BhN ~QBhS ’ hs
h.(e -1) + h,(e -1)
S N
2Ch -2Ch
T T
.. hB(e + e - 2) - EI
- 2Ch -2Ch ? - h
hg(e T_1) + nyle B_1) B

After the interpolated nodal values on the smaller
rectangular element are found, the 28-point FA formula
(C-33) for unsteady 3D convective transport equation can

then be applied to this smaller element.

26
- o - 1 # _R. .n-1 .
bp = %p T TR, C I Chpbap * TCR ~Cptp’

(C-36)
with ¢"= ¢ at nodal points NET, NEC, ECT, EC, NCT, NC, TC
and P.

Substituting the interpolated nodal values in eq(C-35)
into eq(C-36), a FA formula relating the interior nodal
value %p to its neighboring nodal values at 26 boundary

nodes which are unequally spaced on the larger rectangular

element can then be obtained.

e AR e 8 e e s oo o b

A i a n en a
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26
- 1 R n-1
bp = g C I Dép * Thpép T - bpfp) (C-37)
G + =b 1l
T P
where
G =1 - (2-s-s)CwC - (2-t~t)CSC - (?-P-P)CBC - (2=s5-~
s)(2—t—f)Cswc - (2-s~s)(2-r—r)CWCB - (2-t=-t)(2-r-
r)CSCB - (2-s-s)(2-t-f)(2-r-r)CSWB
bNET = CNET + (s-l)CNWT + (t—l)CSET + (r-l)CNBB +

(s-—l)(t-l)CSw + (s-l)(r-l)CNw + (t=-1)(r-1)%

T B

C + (s-l)(t-l)(r-l)Csw

SEB B

b = C

+ (2—t-t)CSET + (r-l)CECB +

ECT CT

(s—l)(r-l)CWCB + (2-t-B)(r-1)C + (s=1)(2-t-

SEB

E)CSWT + (s-l)(?-t-f)(r-l)Csw

B

bNCT = CNCT + (Z-S-S)CNWT + (t-l)CSCT + (r-l)CNCB +

+ (2-s-8)(r-1)C + (t=-1)(r-

(2—s-s)(t—1)CSWT NWB

1)C

“SCB + (2-s-s)(t—l)(r-l)cSw

B

b = C

NEC + (s-l)CNw

NEC ct (t—l)CSEC + (2-r-r)CNEB +

(s=-1)(t=-1)C + (s-l)(?-r-r)CNw

SWC + (t-1)(2-r-

B

r)C + (s-l)(t-l)(?-r-r)CSw

SEB B

bEC = CEC + (s-1)cwc + (2-t-t)CSEC + (Q-r-r)CECB +

(s-l)(?-t-%)CSWC + (s-1)(2-r-r + (2-t-%t)*

1Cycn




NC

TC

NWT

NWC

WCT

b

wC

SET

SEC

n
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(2—r-r)CSEB + (s—l)(2-t-t)(2-r-r)CSWB

CNC + (t--l)CSC + (2-s-s)Cch + (2-r-r)CNCB +

(2-s—§)(t-l)CSWC + (t-l)(?-r-r)CSCB + (2-g-3)*

(2-r-5)CNwB + (2—s-s)(t—1)(2-r-r)CSWB

CTC + (r---l)CBC + (2-s-s)CWCT + (2-t-t)CSCT +

+ (2-t-F)(r-1)C t+ (2-g-3)%

(2-s-s)(r’-l)CWCB SCB

(2-t—f)CSWT + (2'5'51(2't’t)(r71)CSWB

s [CNWT + (t—l)CSWT + (r-l)CNWB + (t-1)(pr-1)*

Cowr?

S [CNWC + (t—l)Cch + (2-r—r)CNWB + (t-1)(2-r-

s [ CWCT + (2-t-t)cSWT + (r-l)CWCB + (2-t-t)(r

-l)CSw ]

B

=y ~+_F - ctaFy
s[ch + (2=t t)CSWC + (2-p r=)cWC + (2-t-%t)

B
(Q-r-r)CSWB]

t [CSET + (s-l)CSWT + (r-l)CSEB + (s=1)(r-1)*

Cowp?

t [CSEC + (s-1)C + (2-r-r)CSE t (s-1)(2-r-

SWC

R
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scT °© o CSCT + (2-s-§)CSWT + (r-l)CSC + (2-s-8)(r

B

-l)CSWB]

=t -5=5 -p-p ~g=5 )™
bSC =t [CSC + (2-s s)CSWC + (2-pr r)CSCB + (2-s-8)

(2-r-r)CSWB]

i i e stad Tl T A e i b e

bypp * rl Cyen * (s-l)cNWB + (t-l)cSEB + (s-1)(t=1)*%
Cswa? ;
| breg = Tl Crog * (s-1)Cpep + (2-t-8)Cqpp + (s-1)(2-t- ?
t)CSWB]
byep = T L Cyep * (2-5-8)Cppn + (t-1)Cqpop + (2-5-85)*%
(t-l)CSWB]

- - -- - -- - -- % B
bBC = 7 [CBC + (2-s s)CWCB + (2-t t)CSCB + (2-s=-5)¢ 3

(2-t-t)cS ]

WB
bopp = tT [Copp * (s-1)Cqyp] j
boep = tr [CSCB + (2-s-§)cSWB]
bywe = ST [ Cypp * (t=1)Cgqppn]

= bycg = ST [CWCB + (2—t-f)CSWB]

bSWT = st [CSWT + (r—l)CSWBJ

bSWC = st [CSWC + (2-r-r)CSWB]

bowp = strlgyn :
b, = C :
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Where the FA coefficients Cnb are
}1=hE, k :hN and 1 :hT.
For the cases h_.>h h, >h

E W> N S
solution (C-37) can still be used

flow directions and rearrange the

36k

given in eq(C-28) with

etc., the finite analytic
by simply opposite the

indices of nodal points.

Details can be found from computer programs given in

Appendix D.
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APPENDIX D
COMPUTER PROGRAMS

D-1 Computer Program For Solving Unsteady
Two-Dimensional Fluid Flow Problems
Using Vorticity-streamfunction
Formulation

********t***********i*********************ti********t*

DEVELOPMENT OF FINITE ANALYTIC METOD FOR UNSTEADY
TWO-DIMENSIONAL CONVECTIVE TRANSPORT EQUATIONS
*************************************i****************
BY CHEN,HAMN-CHING

UNIVERSITY OF IOWA
************************************************t*****
TEST PROBLEM : DEVELOPMENT OF VORTEX STREET BEHIND A ?

RECTANGULAR BLOCK
**t***********t******t********************************

acaaaoanaaaaaan

$INSERT SYSCOM>ERRD.F
$INSERT SYSCOM>KEYS.F
$INSERT SYSCOM>A$KEYS
IMPLICIT REAL*8(A-H,0-2)
COMMON/ABC1/PSIN(48,37), 2ETAN(48,37,2)

; COMMON/ABC2,/U(48,37),V(48,37) ,HX(48) HY(48)
3 COMMON/ABC3/F (48,37),D
COMMON /ABC4/PSINO(48,37), 2ETANO(48,37)
COMMON/COEEA/CMP (48,37) ,CNP(48,37),CPP(48,37)
COMMON/COEFB/CMN(48,37) ,CNN(48,37),CPN(48,37)
COMMON/COEEC,/CMM (48, 37) ,CNM(48,37),CEM(48,37)
COMMON/EOEFA/EMP (48, 37) ,ENP(48,37) ,EPP(48,37)
COMMON /EOEFB/EMN(48,37) ,ENN(48,37) ,EPN(48,37)
COMMON/EOEFC/EMM(48,37) ,ENM(48,37) ,EPM(48,37)
; COMMON /COEF1/CE(3,3)
’ CALL SRCHSS$ (K$READ, 'AS00',4,7,TYPE, CODE)
CALL SRCHSS (K$WRIT,'C500',4,2, TYPE, CODE)
IXMAX=48
IYMAX=37
IXM1=IXMAX-1
IYM1=IYMAX-1

e o Pt bt R B S 2 S e £
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o IXF=6
IXR=7
IYL=15
1YU=23
IXFM1=IXF-1
IKFP1=IXF+1
IXRM1=IXR-1
IXRP1=IXR+1
IYLM1=IYL-1
IYLP1=IYL+1
IYUM1=IYU-1
IYUP1=IYU+1
ITERP=50
ITERZ=20
IEND=100
NM=2
EPE=0.0001
DIFFMP=0.00001
DIFFMZ=0.00001
RFP=1.6
TAU=0. 2
RE=500.
D=RE/TAU
DO 30 IX=2,4

30 HX(IX)=0.5
DO 31 IX=5,18

31 HX(IX)=0.25
DO 32 IX=19,28

32 HX(IX)=0.5
DO 33 IX=29,48

33 HX(IX)=0.8
DO 34 1Y=2,3

34 HY(IY)=0.5
DO 35 1Y=4,35

35 HY(1Y)=0.125
DO 36 1Y=36,37

36 HY(IY)=0.5
READ(11,50) (HX(IX), IX=2, IXMAX)
READ(11,50) (HY(IY), IY=2, IYMAX)
WRITE(6, 50 )RE, TAU
WRITE(6,50) (HX(IX), IX=2, IXMAX)
WRITE(6,50) (HY(IY),IY=2, IYMAX)

50 FORMAT(//5X,6F8.4)

aaoaoaoaoQaaaoaaaaa

P Y R 2222222222222 XXX SR RS S X 222222 AR 2R S

INITIAL AND BOUNDARY CONDITIONS

PN Y 2 22 AR 2SR SRS X XSRS SR RS R R AR AR RS S

eNeoNeNeN?]

DO 100 IX=1, IXMAX
DO 100 IY=1, IYMAX

L.. S' i
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100

102

103

104
122

123

125

150
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ZETAN(1X,1Y,1)=0.
ZETAN(IX,1Y,2)=0.
U(IX,IY)=0.
V(IX,1Y)=0.
F(IX,IY)=0.
PSIN(IX, 1Y)=0.
DO 102 IX=1, IXMAX
PSIN(IX,1)=-3.
PSIN(IX, IYMAX)=3.
U(IX,1)=1.
U(IX, IYMAX)=1.
DO 103 IY=1, IYMAX
U(l,1Y)=1.

=-3.
DO 104 IY=1, IYMAX

=Y+HY (1Y)

PSIN(1,IY)=Y

DO 122 I1Y=1, 1YMAX
READ(11,1350) (PSIN(IX, 1Y), IX=1, IXMAX)
DO 123 IY=1, IYMAX
READ(11,1350) (ZETAN(IX,IY,1), IX=1, IXMAX)
DO 125 IX=1, IXMAX

DO 125 IY=1, IYMAX

ZETAN(IX, 1Y,2)=ZETAN(IX, 1Y, 1)

**************************************t**i**********

CALCULATION OF FINITE ANALYTIC COEFFICIENTS

FOR STREAMFUNCTION
PO SIS T T 2 2 2 2 S AR A S AL AR Al

DO 150 IX=2,IXMl

DO 150 1Y=2,IYM1

IF(IX.GE. IXF.AND.IX.LE.IXR.AND.IY.GE.IYL.AND.IY.LE.
11YU) GO TO 150

HE=HX(IX+1)

HW=HX( IX)

HN=HY(IY+1)

HS=HY(IY)

CALL COEFF2(0.,0.,HE,HW, HN, HS)
EMM(IX, IY)=CF(1,1)

EMN(IX, IY)=CF(1,2)

EMP (IX, IY)=CF(1,3)

ENM( IX, IY)=CF(2,1)

ENN( IX, IY)=CF(2,2)

ENP(IX, IY)=CF(2,3)

EPM! IX, IY)=CF(3,1)

EPN(IX, IY)=CF(3,2)

EPP(1X, 1Y)=CF(3,3)

CONT INUE

MM=0
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i**ti***it**ti*it*i**'iti*ii**i*t*i*i****it‘i**itiii

RETURN POINT OF MARCHING PROCESS

Qti*i***ii*ﬁti*iﬁii*itti****t*it**ii**ti*ti*ttt**i**

DO 1200 IT=1, IEND
MM=MM+1

**ii*iﬁ**!**it*tiii*i&**tii**i**i*‘ﬁt*ﬁii*ii***i*ii*

CALCULATION OF STREAMFUNCT IONS FOR FIELD POINTS

ti**i*ii*t****i*tti*Q*i*it*ﬁi***i**ti**i**ﬁii*******

po 155 ITER=1, ITERP
DIFFM=0.
DO 161 IX=2,1XMl
IF(IX.GE.IXF.AND.IX.LE.IXR)GO TO 156
CALL PSINA(Z,IYM1,IX)
GO TO 160

156 CALL PSINA(2, 1YLM]1, IX)
CALL PSINA(IYUPI,IYMI,IX)

160 DO 16. 1Y=2,I1YM]
DIFF=DABS(PSIN(IX,IY)-PSINO(IX,IY))
IF(DIFF.GT.DIFFM) DIFFM=DIFF

PSIN(IX,IY)=PSINO(IX,IY)+RFP*(PSIN(IX,IY)-PSINO(IX,IY))

161 PSINO(IX,IY)=PSIN(IX,IY)
IF(DIFFM.LT.DIFFMP) GO TO 163

155 CONTINUE

163 NRITE(6,166)ITER,DIFFM

166 FORMAT(5X, 'NO. OF ITERATIONS FOR PSIN="',15, SX,
1'DMAXP=',E12.4)
DO 157 1Y=2,IYM]

157 PSIN(IXMAX,IY)=PSIN(IXM1,IY)

Qtf!ifii*ﬁi*iikittiii*ii*titti*tti*iﬁ*ﬁﬁttiﬁtQiiiitif

CALCULATION OF VELOCITY FIELDS

Qiﬁi'i**i*tf**iititttt*ti*iiitiiﬁ*tﬁﬁiﬁiiﬁﬁ**itiiitti

DO 175 IX=2, IXMl
po 175 1Y=2,1YM1
IF(IX.GE.IXF.AND.IX.LE.IXR.AND.IY.GE.IYL.AND.IY.LE.
11YU) GO TO 175
HE=HX(1X+1)
HW=HX ( IX)
HN=HY (1Y+1)
HS=HY (1Y)
U(Ix,IY)=(HS'HS'(PSIN(IX,IY*I)-PSIN(IX,IY))-HN'HN'
l(PSIN(IX,IY-l)-PSIN(IX,IY)))/HN/HS/(HN+HS)
V(IX,IY)=(HE'HE*(PSIN(IX-1,IY)-PSIN(!X,IY))-HW*HW'
1(PSIN(IX01,IY)-PSXN(IX,IY)))/HE/HW/(HE*HN)

175 CONTINUE
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DO 176 1Y=2,1YM]1
176 U(IXMAX,IY)=U(IXM1,61Y)

i*ﬁi'ii*i*titiQtQ*ii**iﬁi.tﬁiii*fii*ii*i*iﬁiii**

CALCULATION OF FINITE ANALYTIC COEFFICIENTS

FOR VORTICITY
R AR RAR AR R R RAR RN R AR RN RPN ERRRTARRRR R AR

DO 200 IX=2,IXMl
DO 200 1Y=2,I1YM1
IF(IX.GE.IXF.AND.IX.LE.IXR.AND.IY.GE.IYL.AND.IY.LE.

11YU) GO TO 200
AR=0.S*RE*U(IX, 1Y)
BR=0.5*RE*V(IX, 1Y)
HE=HX(1X+1)
=HX (IX)
HN=HY (IY+1)
HS=HY(1Y)
CALL COEFF2(AR,BR, HE, HW, HN, HS)
CMM(IX, IY)=CF(1,1)
CMN(IX, IY)=CF(1,2)
CMP(1X, I1Y)=CF(1,3)
CNM(IX, 1Y)=CF(2,1)
CNN(1X, 1Y)=CF(2,2)
CNP(1X, 1Y)=CF(2,3)
CPM(IX,1Y)=CF(3,1)
CPN(IX, 1Y)=CF(3,2)
CPP(IX,I1Y)=CF(3,3)
200 CONTINUE

t*tﬁﬁ:f*iiﬁﬁ*QQQiiiQiiiiiﬁﬁ**iﬁitii'fi*i*ﬁitiﬁi't.*i

CALCULATION OF BOUNDARY VORTICITY
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DO 250 IY=IYLP1, IYUM]
ZETAN(IXF,IY,2)=C.-2.‘PSIN(IXFMI,IY)/HX(IXF)/HX(IXF)
ZETAN(IXR,IY,2)=0.—2.'PSIN(IXRPl,IY)/HX(IXRPl)
1/HX(IXRP1)

250 CONTINUE
ZETAN(IXF,IYU,2)=0.-2.'PSIN(IXFH1,IYU)/HX(IXF)/HX(IXF)
1-2.*PSIN(IXF, IYUP1)/HY(IYUP1)/HY(IYUP]1)
ZETAN(IXR,IYU,2)=O.-2.*PSIN(IXRP1,IYU)/HX(IXRPI)/
IHX(IXRPI)-Z"PSIN(IXR,IYUPI)/HY(IYUPI)/HY(IYUPI)
ZETAN(IXF,IYL,2)=0.-2.'PSXN(IXFMI,IYL)/HX(IXF)/HX(IXF)
1-2. *PSIN(IXF, IYLM1)/HY(IYL)/HY(IYL)
ZETAN(IXR,IYL,Z)BO.-Z.*PSIN(IXRPI,IYL)/HX(IXRPI)/
IHX(IXRPI)-Z.'PSIN(IXR,IYLMI)/HY(IYL)/HY(IYL)

.0'0'.0'...'.00.00QQQQQQQQQQQQQQO‘.0.000.0.0000...00

CALCULATION OF VORTICITY FOR FIELD POINTS USING
VORTICITY TRANSPORT EQUATION
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Do 305 ITER=1, ITERZ
DIFFM=0.
DO 311 IX=2,IXMl
IF(IX.GE.IXF.AND.IX.LE.IXR)GO TO 306
CALL ZETANA(2,IYM1,IX)
GO TO 310
306 CALL ZETANA(2, IYLM1, IX)
CALL ZETANA(IYUP1, IYM1,IX)
310 DO 311 1Y=2,IYM1
DIFF=DABS (ZETAN(IX,1Y,2)-2ETANO(IX, IY))
IF(DIFF.GT.DIFFM) DIFFM=DIFF
311 ZETANO(IX,1Y)=ZETAN(IX, 1Y, 2)
IF(DIFFM.LT.DIFFMZ) GO TO 313
305 CONTINUE
313 WRITE(6,316) ITER,DIFFM
316 FORMAT(5X, 'NO. OF ITERATIONS FOR 2ETAN=', 14, 5X,
1 'DMAXZ2=',E12.4)
DO 307 IY-Z,1lYMl
307 ZETAN(1XMAX, 'Y, 2)=2ETAN(IXM1,1Y,2)
DO 500 IX=1, IXMAX
DO 500 1Y=1, IYMAX
500 ZETAN(IX,1Y,1)=7ETAN(IX, 1Y, 2)
IF(MM.LT.NM) GO TO 999
MM=0
WRITE(6,600) 1T ,
600 FORMAT(,//5X,'NO. OF TIME STEPS =',15) f
DO 700 IY=1, IYMAX ‘
700 WRITE(6,1350) (PSIN(IX, 1Y), IX=1, IXMAX)
DO 800 IY=1, IYMAX ;
800 WRITE(6,1350) (ZETAN(IX,1Y,2),IX=1, IXMAX) i

iittﬁl.ﬁt'iiﬁﬁﬁwﬁﬁiﬁﬁtﬁiQQQQQQQQQQQQQQQQQQQQQQQii
CHECK THE CIRCULATION ]
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999 CIRCUL=0.
DO 1000 IX=2, IXMAX
DO 10L) 1Y=2, [YMAX
IF(IX.GT.IXE.AND.IX.LE.IXR.AND.IY.GT.IYL.AND.
11Y.LE.1YU) GO TO 1000
CIRCUL-CIRCUL+ (ZETAN( IX,1Y,2)+ZETAN(IX, 1Y-1,2)*2ETAN
1(1X-1,1Y,2) *ZETAN(1X-1,1Y-1,2)) *HX(1X)*HY(IY)/4.
1000 CONT INUE
WRITE(6,1001)CIRCUL n
1001 FORMAT(//SX.'CIRCUL=' E15.8)
1200 CONTINUE d
DO 1101 1Y-1, 1YMAX
1101 WRITE(6.1350)(U(IX, 1Y), IX=1, IXMAX)
DO 1102 1Y-1, IYMAX
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1102 WRITE(6,1350)(V(IX, 1Y), IX=1, IXMAX)
1350 FORMAT(7F11.6)

CALL EXIT

END

***t***it*****t******************************fi*****

SUBROUTINE TRIDAG TO SOLVE ALGEBRAIC EQUATIONS

SIMULTANEOUSLY FOR EACH ROW OR COLUMN
N Y2 X222 22222222 2R SRR RS S22 A0 A0 A A2t

onnanaano

| SUBROUTINE TRIDAG(IF,L,A,B,C,D,V)
| IMPLICIT REAL*8(A-H,0-2)
DIMENSION A(48),B(48),C(48),D(48),V(48),BETA(48),
; 1GAMMA (48)
| BETA( IF)=B(IF)
} GAMMA (IF)=D(1F)/BETA(IF)
| IFP1=IF+1
DO 1 I=IFP1,L
\ BETA(I1)=B(I)-A(I)*C(I-1)/BETA(I-1)
‘ 1 GAMMA(I)=(D(I)-A(I)*GAMMA(I-1))/BETA(I)
| V(L}=GAMMA (L)
LAST=L-IF
DO 2 K=1,LAST
I=L-K
2 V(I)=CAMMA(I)-C(I)*V(I+1)/BETA(I)
RETURN
END

Y Y Y222 2222222222232 R A2 XX 22 X8 RS2SR R AR

SUBROUTINE COEFF TO CALCULATE FINITE ANALYTIC
COEFFICIENTS

R R R R R R 2222222222 2RSS X2 2222 2 2R R AR A R0 2

oqQaaaaoaoaaon

| SUBROUTINE COEFF2(AR,BR,HE,HW,HN,HS)

IMPLICIT REAL*8(A-H,0-2)
COMMON/COEF1/CF (3, 3)
PI=3.141592653589793D0
EPE=0.0001
MAX=20
JX=1
Jy=1
1F(HE.LT.HW) GO TO 2
JX=-1
AR=-AR

2 IF(HN..T.HS) GO TO 3
JY=-1
BR=-BR
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IF(DABS (AR) .LT.EPE )AR=DSIGN(EPE, AR)

IF (DABS (BR) . LT .EPE ) BR=DSIGN(EPE, BR)
HX=DMIN1 (HE, HW)

=DMIN1 (HN,HS)

HX1=DMAX1 (HE, HW)

HY1=DMAX1 (HN, HS)

AH=AR*HX

BK=BR*HY

AH1=AR*HX1

BK1=BR*HY1

AB2=AR*AR+BR*BR

SEW=HX1* (DEXP (2 .*AH)-1.)+HX* (DEXP(-2. *AH1)-1.)
TNS=HY1* (DEXP(2.*BK)-1.)+HY*(DEXP(-2.*BK1)-1.)
EPAH=DEXP ( -AH)

EPBK=DEXP ( -BK)

COSHA=0.5*EPAH+0.5/EPAH
COSHB=0.5*EPBK+0.5/EPBK
COTHA=(1.+EPAH*EPAH)/(1.-EPAH*EPAH)
COTHB=(1.+EPBK*EPBK)/(1.-EPBK*EPBK)

IF (DABS(HE-HW) .GT.EPE) MAX=30

I1F (DABS(HN-HS).GT.EPE) MAX=30

IF (HX.GT.HY)GO TO 20

EX2=0.

DO 10 I=1,MAX

ZA=(1-0.5)*PI

PWR=(-1.)**I*2A

AB=DEXP ( (AB2+ZA*ZA/HX/HX)**0.5*HY)
EX2=EX2-2.*PWR/(AB+1./AB)/(AH*AH+ZA*ZA) **2
EY2=EX2*HX*HX/HY/HY+ (1. /BK/COTHB-HX *HX/HY/HY/AH/COTHA)
1/4 . /COSHA/COSHB

GO TO 15

EY2=0.

DO 16 I=1,MAX

ZA=(I1-0.5)*PI

PWR=(~1.)**I*2A

AB=DEXP ( (AB2+ZA*2ZA/HY/HY) **0.5*HX)
EY2=EY2-2.*PWR/(AB+1./AB)/(BK*BK+ZA*2ZA) **2
EX2=EY2 *HY *HY /HX/HX+ ( 1. /AH/COTHA-HY *HY/HX/HX/BK/COTHB)
1/4. /COSHA/COSHB
E=0.25/COSHA/COSHB-AH*COTHA*EX2-BK*COTHB*EY2
EA=2. *AH*COSHA *COTHA*EX2
EB=2.*BK*COSHB*COTHB*EY2

CNN= ( AH/COTHA+BK/COTHB-4. *COSHA*COSHB* (AH*AH*EX2
++BK*BK*EY2))/2./AB2

CNW=E/EPAH*EPBK

CNE=E*EPAH*EPBK

CSW=E/EPAH/EPBK

CSE=E*EPAH/EPBK

CNC=EA*EPBY.

CSC=EA/EPBK
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CWC=EB/EPAH

CEC=EB*EPAH
S=(EPAH*EPAH+1./EPAH/EPAH-2. ) *HX1/SEW
S1=S-1.

SB=S*HX /HX1

SS=1.-S1-SB
T=(EPBK*EPBK+1./EPBK/EPBK-2. ) *HY1/TNS
T1=T-1.

TB=T*HY/HY1

TS=1.-T1-TB

CP=1.-SS*CWC-TS*CSC-SS*TS*CSW
CF(2+JX,2+JY)=(CNE+S1*CNW+T1*CSE+S1+T1*CSW) /CP
CF(2-JX,2+JY)=SB* (CNW+T1*CSW) /CP
CF(2+JX,2-JY)=TB*(CSE+S1*CSW) /CP
CF(2-JX,2-JY)=SB*TB*CSW/CP
CF(2+JX,2)=(CEC+S1*CWC+TS*CSE+S1*TS*CSW) /CP
CF(2-JX,2)=SB* (CWC+TS*CSW) /CP
CF(2,2+JY)=(CNC+T1*CSC+SS*CNW+T1*SS*CSW) /CP
CF(2,2-JY)=TB*(CSC+SS*CSW) /CP
CF(2,2)=CNN/CP

RETURN

END

***i**************************************************

SUBROUTINE TO CALCULATE THE STREAMFUNCTION

**********i*******************k**i*********t************

SUBROUTINE PSINA(IL, IU, IX)

IMPLICIT REAL*8(A-H,0-2)

DIMENSION AA(48),BB(48),CC(48),DD(48),T(48)
COMMON/ABC1/PSIN(48,37), ZETAN(48,37,2)
COMMON/EOEFA/EMP (48, 37) ,ENP (48, 37) , EPP (48, 37)
COMMON/EOEFB/EMN(48,37) ,ENN(48,37) , EPN(48,37)
COMMON/EOEFC/EMM(48,37) ,ENM(48,37) , EPM(48, 37)
DO 160 IY=IL,IU

AA(IY)=-ENM(IX, 1Y)

BB(IY)=1.

CC(IY)=-ENP(IX,IY)

160 DD(IY)=EMM(IX,IY)*PSIN(IX—I,IY-1)+EMP(IX,IY)*

170

1PSIN(IX-1,IY+1)+EMN(IX,IY)*PSIN(IX-I,IY)+EPN(IX,IY)*
2PSIN(IX+1,IY)+EPM(IX,IY)*PSIN(IX*I,IY-l)*EPP(IX,IY)’
3PSIN(IX*1,IY*1)+ENN(IX,IY)*ZETAN(IX,IY,I)
DD(IL)=DD(IL)-AA(IL)*PSIN(IX,IL-I)
DD(IU)=DD(IU)-CC(IU)*PSIN(IX,1U+1)

CALL TRIDAG(IL,IU,AA,BB,CC,DD,T)

DO 170 I1Y=IL,IU

PSIN(IX, 1Y)=T(1Y)

RETURN

END

QQ*t*ﬁf’**if’*tQQQQQt*iQiiii*i*.**fifiﬁf’i*i"i.ﬁf
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C SUBROUTINE TO CALCULATE THE VORTICITY
. C O Y S I 2 2222 RS R SR RS R R AR AR B 0 &
C

SUBROUTINE ZETANA(IL,1U, IX)

IMPLICIT REAL*8(A-H,0-2)

DIMENSION AA(48),BB(48),CC(48),DD(48),T(48)
COMMON/ABC1/PSIN(48,37),2ETAN(48,37,2)
COMMON/ABC2,/U(48,37),V(48,37) ,HX(48),HY(48)
COMMON/ABC3/F(48,37),D

COMMON /COEFA/CMP (48, 37) ,CNP (48,37) ,CPP(48,37)
COMMON /COEFB/CMN(48,37) ,CNN(48,37),CPN(48,37)
COMMON /COEFC/CMM(48,37) ,CNM(48,37),CPM(48,37)
DO 320 1Y=IL,IU

UE=0.5*(U(IX+1,IY)+U(IX, 1Y))
UW=0.5*(U(IX-1,1Y)+U(IX,1Y))

VN=0.5*(V(IX, I¥Y+1)+V(IX, IY))

VS=0.5*(V(IX, IY-1)+V(IX, 1Y))

EPAHE=DEXP (0.25*RE*UE*HX ( IX+1))
EPAHW=DEXP (0. 25*RE*UW*HX ( IX))
EPBHN=DEXP (0. 25*RE*VN*HY (1Y+1))

EPBHS=DEXP (O.25*RE*VS*HY(1Y))

******t*t**i********t******************i**********

CALCULATION OF HIGHER ORDER CORRECTION
FOR CONVECTIVE TERM

*ti*********i***************t*********i***********

aaaaaaaq

ZE=(ZETAN(IX, 1Y, 2)*EPAHE+Z2ETAN(IX+1,1Y,2)/EPAHE)
1/(EPAHE+1./EPAHE)
2W= (ZETAN(IX-1, 1Y, 2)*EPAHW+ZETAN(IX, 1Y, 2)/EPAHW)
1/(EPAHW+1 . /EPAHW)
2N=(2ETAN(IX, 1Y, 2)*EPBHN+2ETAN(IX, I1Y+1,2)/EPBHN)
1/(EPBHN+1./EPBHN).
2S=(2ETAN( IX, IY-1,2)*EPBHS+2ETAN( X, 1Y, 2)/EPBHS)
1/(EPBHS+1./EPBHS)

| UE=(U(IX, 1Y) *EPAHE+U(IX+1, 1Y) /EPAHE)/(EPAHE+1. /EPAHE)

UW=(U(IX-1, 1Y) *EPAHW+U(IX, 1Y) /EPAHW)/(EPAHW+1. /EPAHW)
VN=(V(IX, IY)*EPBHN+V(IX, IY+1)/EPBHN)/(EPBHN+1. /EPBHN)
| VS=(V(IX, 1Y-1)*EPBHS+V(IX, IY)/EPBHS)/(EPBHS+1./EPBHS)

] F(IX,1Y)=2.*RE*(((UE-U(IX, IY))*2E-(UW-U(IX, IY))*2ZW)

| 1/(HX(IX+1)+HX(IX))+((VN-V(IX,1Y))*2N
2-(VS-V(IX,1Y))*2S)/(HY(IY+1)+HY(IY)))

AA(1Y)=-CNM(IX, 1Y)
BB(IY)=1.+D*CNN(1X, 1Y)
CC("Y)=-CNP(IX, 1Y)

320 DD(. —CPN(IX,IY)*ZETAN(IX+1,1Y,2)+CMN(IX,IY)*2ZETAN
1(IX-. Y,2)+CPP(IX,I1Y)*ZETAN(IX+1,1Y+1,2)+CPM(IX, 1Y)
2*ZETAN(IX+1,1Y-1,2)+CMP(IX, IY)*ZETAN(IX-1,61Y+1,2)
3+CMM( IX, 1Y) *ZETAN(IX-1, IY-1,2)+CNN(IX, 1Y)
4+ (D*ZETAN(IX, 1Y, 1)-F(IX,IY))

DD(IL)=DD(IL)-AA(IL)*Z2ETAN(IX,IL-1,2)

!
E
%
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DD(1U)=DD(IU)-CC(I1U)*ZETAN(1X, IU+1,2)
CALL TRIDAG(IL,IU,AA,BB,CC,DD,T)
Do 330 IY=IL,IU
330 ZETAN(IX,IY,2)=T(IY)
RETURN
END

B e s 5 & e i S S i, it

D-2 Computer Program For Solving Unsteady
E Three-Dimensional Fiuid rlow Problems
»2 Using Primitive Variable Formulation

***************************************************

DEVELOPMENT OF FINITE ANALYTIC METHOD FOR UNSTEADY
THREE-DIMENSIONAL CONVECTIVE TRANSPORT EQUATION
***************************************************
BY CHEN, HAMN-CHING
THE UNIVERSITY OF IOWA
***************************************************
TEST PROBLEM : CUBIC CAVITY FLOW

IN PRIMITIVE VARIABLE FORMULATION

*********t*****************************************

aaaaoaaonaaaea

SINSERT SYSCOM>ERRD.F

SINSERT SYSCOM>KEYS.F

SINSERT SYSCOM>AS$KEYS

IMPLICIT REAL*8(A-H,O0-2)
COMMON/ABC1,/U(18,6,18),V(18,6,18),W(18,6,18)
COMMON/ABC2/U1(18,6,18),V1(18,6,18),W1(18,6,18)
COMMON/ABC3,/U2(18,6,18),V2(18,6,18),W2(18,6,18)
COMMON/ABC4/FX(18,6,18) ,FY(18,6,18) ,F2(18,6,18)
COMMON/ABC5/CU(18,6,18),CV(18,6,18),CW(18,6,18)
COMMON/ABC6/DS(18,6,18) ,PR(18,6,18) ,PP(18,6,18)
COMMON/ABC7/AA(18),BB(18),CC(18),DD(18),T(18)
1,HX(18),HY(18),HZ(18)

COMMON,/ABCB/UX(18,6,18) ,VY(18,6,18),W2(18,6,18)
COMMON/AAA/CF(3,3,3) :
COMMON/UC1/UMPP (18, 6,18) ,UNPP(18,6,18) ,UPPP(18,6,18) !
: CGMMON,/UC2/UMNP( 18, 6,18) ,UNNP(18,6,18) ,UPNP(18,6,18)
- COMMON/UC3 /UMMP (18, 6,18) ,UNMP(18,6,18) ,UPMP(18,6,18)
COMMON,/UC4/UMPN( 18, 6,18) ,UNPN(18,6,18) , UPPN(18,6,18)
COMMON/UCS /UMNN( 18, 6,18) ,UNNN(18,6,18) ,UPNN(18,6, 18)
COMMON/UC6,/UMMN( 18, 6,18) ,UNMN(18,6,18) ,UPMN(18,6,18)
COMMON /UC7/UMPM( 18, 6, 18) ,UNPM(18,6,18) ,UPPM(18,6,18)
GOMMON,/UC8/UMNM( 18, 6, 18) ,UNNM(18,6,18) ,UPNM(18,6,18)
COMMON /UC9 /UMMM( 18,6, 18) ,UNMM(18,6,18) ,UPMM(18,6,18)
COMMON/VC1/VMPP(18,6,18) ,VNPP(18,6,18),VPPP(18,6,18)
COMMON/VC2/VMNP (18,6, 18) ,VNNP(18,6,18),VPNP(18,6,18)
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COMMON/VC3/VMMP(18,6,18),VNMP(18,6,18),VPMP(18,6,18)
COMMON/VC4/VMPN(18,6,18) ,VNPN(18,6,18), VPPN(18.6.18)
COMMON,/VC5/VMNN( 18,6, 18) ,VNNN(18,6, 18), VPNN( 18,6, 18)
COMMON/VC6/VMNN( 18,6, 18) ,VNMN( 18,6, 18), VPMN( 18, 6, 18)
COMMON,/VC7,/VMPM(18,6,18),VNPM(18,6,18),VPPM(18, €, 18)
COMMON/VC8/VMNM(18,6,18),VNNM(18,6,18),VPNM(18.6,18)
COMMON/VC9/VMMM(18,6,18) , VNMM(18,6, 18), VPMM( 18,6, 18)
COMMON/WC1/WMPP(18,6,18) ,WNPP(18,6,18),WPPP (18,6, 18)
COMMON/WC2/WMNP (18,6,18) ,WNNP(18,6,18),WPNP (18,6, 18)
COMMON/WC3 /WMMP (18, 6,18) ,WNMP (18,6, 18) , WPMP (18, 6, 18)
COMMON/WC4/WMPN( 18,6, 18) ,WNPN(18,6,18),WPPN(18.6.18)
COMMON/WC5 /WMNN( 18,6, 18) ,WNNN( 18,6, 18) ,WPNN (18,6, 18)
COMMON/WC6 /WMMN( 18,6, 18) , WNMN(18,6,18), WPMN( 18,6, 18)
COMMON/WC7/WMPM( 18, 6,18) ,WNPM( 18,6, 18) ,WPPM(18,6, 18)
COMMON/WC8 /WMNM( 18, 6,18) ,WNNM(18, 6, 18) , WPNM(18,6. 18)
COMMON/WC9/WMMM (18,6, 18) ,WNMM(18,6,18), WPMM( 18,6, 18)
CALL SRCH$$(K$READ, 'T400',4,7, TYPE, CODE)

CALL SRCHS$$(K$WRIT,'J400',4,2, TYPE, CODE)

IXMAX=17

IYMAX=5

IZMAX=17

IXP1=IXMAX+1

IYP1=IYMAX+1

IZP1=IZMAX+1

IXM1=IXMAX-1

IYM1=IYMAX-1

IZM1=1ZMAX-1

IXMM=( IXMAX+1} /2

ITERP=10

ITERU=S

ITERV=5

ITERW=5

IEND=10

NM=5

EPE=0.0001

HX(1)=0.

HX(IXP1)=0.

HY(1)=0.

HZ(1)=0.

HZ(I2P1)=0.

DO 41 IX=2, IXMAX

HX(IX)=1./IXM1

DO 4z 1Y=2,1YP1

HY(IY)=0.5/IYM1

DO 43 12=2, IZMAX

HzZ(I1Z)=1./12M1

TAU=0.5

RE=400.

D=RE/TAU

WRITE (6, 50)RE, TAU
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90
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WRITE(6,1350) (HX(IX), IX=1, IXP1)
WRITE(6,1350) (HY(IY),IY=1, IYP1)
WRITE(6,1350) (HZ(12),12=1,12ZP1)
FORMAT(//5X, 6E12.4)

DO 90 IX=1,IXP1l

DO 90 IY=1,IYP1

DO 90 IZ=1,I12P1

U(1X,1Y,12)=0.

V(IX,1Y,12)=0.

W(IX,1Y,12)=0.

DS(IX,1Y,12)=0.

PP(IX,1Y,12)=0.

CU(IX,1Y,12)=0.

CV(IX,1Y,12)=0.

CW(IX,IY,12)=0.

UX(IX,1Y,1Z)=0.

VY(IX,IY,12)=0.

W2 (IX,1Y,12)=0.

PR(IX, 1Y, 12)=0.

khhhkhhhhhhhthhhhttrdhhhhhhdrhthrhhhhhkhhhhhkkrdhkrdi

SPECIFY THE INITIAL CONDITION
Kkhhkhhehohhhhdhrkdhhh kbbbt hhtbdhrtdthrds

DO 123 IX=1, IXMAX

DO 123 1Y¥=1,IYP1

READ(11,1350) (U(IX,1Y,12),12=1,12P1)
DO 124 IY=1, IYMAX

DO 124 12=1,I2P1

READ(11,1350) (V(IX,1Y,I2),IX=1,IXP1)
DO 125 12=1,I2MAX

DO 125 1Y=1,IYP1

READ(11,1350) (W(IX,IY,12),IX=1,IXP1)
DO 126 12=1,IZP1

DO. 126 1Y=1,IYP1

READ(11,1350) (PR(IX,IY,1Z),IX=1, IXP1)
DO 127 IX=1,IXP1

Do 127 1Y=1,IYP1

U(IX,IY,1)=1.

DO 25 12=1,12P1

DO 25 IY=1, IYP1

DO 25 I1X=1,1XP1
Ul(IX,1Y,12)=U(IX,1Y,12)
U2(1IX,1Y,12)=U(IX,1Y,612)
V1(IX,1Y,12)=V(IX, 1Y, I12)
V2(1IX,1Y,12)=V(IX, 1Y, 12)
W1(IX,1Y,12)=W(IX,1Y,12)
W2(IX,IY,12)=W(IX,1Y,12)

MM=0
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IZEZXZEEEXEREESREZ SRS RS RS X ZR A RS R R R AR R AL AR RS R RE SR

RETURN POINT FOR MARCHING PROCESS
22 22222 2222y R

oNoRoNO NS

DO 1200 IT=1, IEND

MM=MM+ 1

DO 180 IX=2, IXMAX

DO 180 1Y=2, IYMAX

DO 180 12=2, 1ZMAX

HEE=0.5% (HX(IX+1)+HX(IX))

HWW=0.5* (HX(IX-1)+HX(IX))

HNN=0.5% (HY(I1Y+1)+HY(1Y))

HSS=0.5% (HY(IY-1)+HY(IY))

HTT=0.5% (HZ(12+1)+HZ(1Z))

HBB=0.,* (HZ(12-1)+HZ(12))

AUX=0.5*RE*UX(IX, IY, I12)

BVY=0.5*RE*VY(IX, 1Y, 12)

CW2=0.5*RE*WZ(IX, 1Y, 12)

IF (DABS(AUX) .LT.EPE)AUX=DSIGN(EPE, AUX)
IF(DABS(BVY).LT.EPE)BVY=DSIGN(EPE, BVY)

IF (DABS(CWZ) .LT.EPE)CWZ=DSIGN(EPE, CWZ)

EPAUX=DEXP (O.5*AUX*HX (IX))
EPBVY=DEXP (0. 5*BVY*HY(IY))
EPCWZ=DEXP (0. 5*CWZ*HZ(12))

UX(IX, 1Y, 12)=(U(IX-1,1Y,12)*EPAUX+U(IX, 1Y, I2)/EPAUX)
1/(EPAUX+1./EPAUX)

VY (IX,1Y, 12)=(V(IX,IY-1,12)*EPBVY+V(IX, 1Y, 12)/EPBVY)
1/(EPBVY+1./EPBVY)
WZ(IX, 1Y, IZ)=(W(IX,IY,IZ-1)*EPCWZ2+W(IX, 1Y, 12)/EPCWZ)
1/(EPCWZ+1./EPCWZ)
180 CONTINUE

[ TR R R R R R R R NSRS RS AR AR RR AR RXE AR AR SRR 2R

CALCULATION OF FINITE ANALYTIC COEFFICIENTS
FOR VELOCITY U IN X-DIRECTION
S R R R E R R R I R RS T R

oo

DO 200 IX=2,IXM1

HE=HX(IX+1)

HW=HX( IX)

DO 200 I1Y=2,1YMAX

HN=0.5* (HY (IY+1)+HY(IY))
HS=0.5* (HY (IY-1)+HY(1Y))

DO 200 I12=2,1ZMAX

HT=0.5*(HZ(12+1)+H2(12))

HB=0.5* (HZ(12-1)+HZ2(12))
VN=(HE*V(IX, 1Y, 1Z)+HW*V(IX+1,1Y,12))/(HE+HW)
VS=(HE*V(IX,1Y-1, IZ)+HW*V(IX+1,61Y-1,12))/(HE+HW)
WT=(HE*W(IX, 1Y, 12)+HW*W(IX+1,61Y,12))/(HE+HW)

WB= (HE*W(IX, 1Y, IZ2-1)+HW*W(IX+1, 1Y, 12-1))/(HE+HW)
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UN=(HY(IY+1)*U(IX, 1Y, IZ)+HY(IY)*U(IX,IY+1,12))/2./HN
US=(HY(IY-1)*U(IX, IY, 1Z)+HY(IY)*U(IX,IY-1,12))/2./HS
UT=(HZ(12+1)*U(IX,1Y,12)+HZ(12)*U(IX,IY,12+1))/2./HT
UB=(HZ(I12-1)*U(IX,1Y,1Z)+HZ(12)*U(IX,IY,12-1))/2./HB
VX=0.5*%(UN+VS)

WX=0.5* (WT+WB)

AR=0.S*RE*U(IX, 1Y, 12)

BR=0.5+RE*VX

CR=0. S*RE*WX

CALL COEFF3(AR,BR,CR,HE,HW, HN, HS, HT,HB)

UMMM( IX, 1Y, 12)=CF(1,1,1)

UMMN(IX,IY,1Z)=CF(1,1,2)

UMMP (IX,IY,1Z)=CF(1,1,3)

UMNM( IX, IY,1Z)=CF(1,2,1)

UMNN(IX 1Y,I1Z)=CF(1,2.2)

UMNP(IX, 1Y, 12)=CF(1,2,3)

UMPM(IX,1Y,1Z)=CF(1,3,1)

UMPN(IX, 1Y, 12)=CF(1,3,2)

UMPP(1X, 1Y, 12)=CF(1,3,3)

UNMM(IX, 1Y, 1Z)=CF(2,1,1)

UNMN(IX, 1Y, 1Z)=CF(2,1,2)

UNMP (IX, 1Y, 1Z2)=CF(2,1,3)

UNNM(IX, 1Y, 1Z)=CF(2.2,1)

UNNN(IX, 1Y, 12)=CF(2,2,2)

UNNP (IX, 1Y, 1Z)=CF(2,2,3)

UNPM(IX, 1Y, 1Z)=CF(2,3,1)

UNPN(IX, 1Y, 1Z)=CF(2.3,2)

UNPP(IX,1Y,1Z)=CF(2,3,3)

UPMM(IX, 1Y, 12)=CF(3,1,1)

UPMN(IX, 1Y, 12)=CF(3,1,2)

UPMP (IX, IY, 12)=CF(3,1,3)

UPNM(IX, 1Y, 1Z)=CF(3,2,1)

UPNN(IX,IY, IZ)=CF(3,2,2)

UPNP (X, 1Y, 12)=CF(3,2,3)

UPPM(IX, 1Y, 1Z)=CF(3.3,1)

UPPN(IX, 1Y, 12)=CF(3,3,2)

UPPP(IX, 1Y, 1Z)=CF(3,3,3)
CU(IX,1Y,I2)=UNNN(IX, 1Y, 12)*RE/(1.+D*UNNN(IX,IY,12))
1/0.5/(HE+HW)

*ﬁii*iﬁ*i*t*tttiﬁﬁQQii*****ititﬁtt**iii*iti'*.tt*tt

CALCULATION OF HIGHER ORDER CORRECTION TERM
FOR X MOMENTUM EQUATION

titt*t**ii*Qtti*ﬁﬁ'itfi.t*i*iﬁ*ittﬂiiiit.*ii'i*tt*i

acoaoaan

FX(IX,IY,IZ)=RE'(((UX(IX*I,IY,IZ)-U(IX,IY,IZ))'UX
1(IX*1,IY,12)-(UX(IX,IY,IZ)-U(IX,IY,IZ))*UX(IX,IY,IZ))
2/0.5/(HE*HW)*((VN-VX)*UN-(VS-VX)'US)/HY(IY)*((WT-RX)
3‘UT-(WB-WX)‘UB)/HZ(IZ))
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R R R R RR R RO PR R R RN R RO R AR R AR AR RN R RN AR R AR AR
DEFINE THE PSEUDOVELOCITY COMPONENT IN X-DIRECTION

SRR XX EXZXSXEX2222 222222 X2 R R AR AR AR SRR RN SRR

J
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uul=0.

CF(2,2,2)=0.

DO 199 JX=1,3

DO 199 JY=1,3

DO 199 J2=1,3
199 UU1=UUl+CF(JX,JY,J2)*U(IX+JX-2,1Y+JY-2,12+J2-2)
200 Ul(IX,1Y,I2)=(UUl1+UNNN(IX,IY,6I2)*(D*Ul(IX,6 1Y,k 12)

1-FX(IX,1Y,I12)))/(1.+D*UNNN(IX,6IY,612))

XX 22X EXXX 2RSSR RSR A 2R AR AR SRS R AR AR AR 22

CALCULATION OF FINITE ANALYTIC COEFFICIENTS
FOR VELOCITY V IN Y-DIRECTION

R R R 2 R RS E R R ST E R SRR R R RSN R R A AR A R AL AR RS R RS & 24

DO 205 I1Y=.,6IYMI

HN=HY(IY+1)

HS=HY (1Y)

DO 205 IX=2, IXMAX

HE=0.5* (HX(IX+1)+HX(IX))

HW=0.5* (HX(IX-1)+HX(IX))

DO 205 12=2,12MAX

HT=0.5*(HZ2(12+1)+HZ2(12))

HB=0.5*(HZ(12-1)+HZ(12))

UE=(HN*U(IX,IY,I2)+HS*U(IX,6 1Y+1,612))/(HN+HS)

UW=(HN*U(IX-1,1Y, I2)+HS*U(IX-1,1Y+1,12))/(HN+dS)

- WT=(HN*W(IX,IY,IZ)+HS*W(IX,6 IY+1,612))/(HN+HS)

WB=(HN*W(IX, 1Y, I2-1)+HS*W(IX,6 1Y+1,612-1))/(HN+HS)

- VE=(HX(IX+1)*V(IX, 1Y, I2)+HX(IX)*V(IX+1,61Y,I2))/2./HE

VW= (HX(IX-1)*V(IX,6 1Y, 12)+HX(IX)*V(IX-1,1Y,12))/2./HW

VT=(HZ(1Z2+1)*V(IX,6 1Y, I2)+HZ2(12)*V(IX,61Y,6 12+1))/2./HT

VB=(HL,12-1)*V(IX, 1Y,k I2)+HZ2(I2)*V(IX, 1Y,12-1))/2./HB

Uy=0.5*(UE+UW)

WY=0.5* (WT+WB)

AR=0.5*RE*UY

BR=0.5*RE*V(IX,6 1Y, 12)

CR=0.5*RE*WY

CALL COEFF3(AR,BR,CR,HE, HW,6 HN,6 HS, 6 HT, K H8)

VMMM( IX, 1Y, 12)=CF(1,1,1)

VMMN(IX,1Y,I12)=CF(1,1,2)

VMMP(IX,1Y,12)=CF(1,1

VMNM(IX,1Y,12)=CF(1,2

VMNN(IX, 1Y, I12)=CF(1,2

VMNP (IX,1Y,12)=CF(1,2
3
3

D L P e L, |
o000

iim

W Ryt

VMPM( IX, 1Y, [2)=CF(1,

3)
1)
' 2)
. 3)
1)
VMPN(IX,1Y.IZ)=CF(1,3,2)
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VMPP (1X,1Y,12)=CF(1,3,3) L
VNMM(IX,1Y,1Z)=CF(2,1,1) C
VNMN(1IX,1Y,12)=CF(2,1,2) ]
VNMP(IX,1Y,1Z)=CF(2,1,3) : 3
VNNM( IX, 1Y, 12)=CF(2,2,1) -
VNNN(IX, 1Y, 12)=CF(2,2,2) |
VNNP (IX, 1Y, 12)=CF(2,2,3) =
VNPM(IX, 1Y, 1Z)=CF(2,3,1)

VNPN(1IX,IY,12)=CF(2,3,2)

VNPP(1IX, 1Y, 1Z)=CF(2,3,3)

VPMM(1IX, 1Y, 1Z)=CF(3,1,1)

VPMN(IX, 1Y, 12)=CF(3,1,2)

VPMP(IX, 1Y, 1Z)=CF(3,1,3)

VPNM(IX, 1Y, 1Z)=CF(3,2,1)

VPNN(IX, 1Y, 1Z)=CF(3,2,2)

VPNP(IX, 1Y, 1Z)=CF(3,2,3)

VPPM(1IX, 1Y, 12)=CF(3,3,1)

VPPN(IX, 1Y, I1Z)=CF(3,3,2)

VPPP(IX, 1Y, 1Z)=CF(3,3,3)

CV(IX, 1Y, 1Z)=VNNN(IX,IY,12)*RE/(1.+D*VNNN(IX,IY,12))

1/0.5/(HN+HS)

i*************t*t**t***********************i*****

CALCULATION OF HIGHER ORDER CORRECTION TERM
FOR Y MOMENTUM EQUATION
AR R R Ty LY Y T T T T

oNoNeNoNoNe)

FY(IX, 1Y, I2)=RE*(((UE-UY)*VE~-(UW-UY)*VW)/HX(IX)
1+((VY(IX,IY+1,12)-V(IX, 1Y, 12))*VY(IX, IY+1,12Z)-
2(VY(IX,1Y,12)-V(IX,IY,I2))*VY(IX,IY,12))/0.5/ (HN+HS)
3+ ((WT-WY) *VT- (WB-WY) *VB) /HZ(12))

*****i*t**i*ttit**f*****i***t***t**t****i*i***ti***

DEFINE THE PSEUDOVELOCITY COMPONENT IN Y-DIRECTION
AR AL SR Y Y Y R R T I T L Y T o uO OO OTuN

oNoNeNoXe!

VV1=0.
CF(2,2,2)=0.
DO 204 JX=1,3
DO 204 JY=1,3
DO 204 Jz=1,3
204 VV1=VV1+CF(JX,JY,J2)*V(IX+JX-2, IY+JY-2, 12+J2-2)
205 V1(IX,IY,I1Z)=(VV1+VNNN(IX, 1Y, IZ)*(D*V1(IX,1Y,1Z)
1-FY(IX,1Y,12)))/(1.+D*VNNN(IX, 1Y, 12))

LA R 2 X N .-**ii't00.0*tiQttfﬁtﬁtftﬁfﬁffﬁiﬂi.‘..i’.*ii.

CALCULATION OF FINITE ANALYTIC COEFFICIENTS
FOR VELOCITY W IN 2-DIRECTION
R A Y Y Y T LT T Y T TN

Cc
c
C
C
C
Cc
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DO 210 12=2,12M1

HT=HZ(12+1)

HB=HZ(12)

DO 210 1Y=2, IYMAX

HN=0.5% (HY(1Y+1)+HY(1Y))

HS=0.5% (HY(1Y-1)+HY(IY))

DO 210 IX=2, IXMAX

HE=0.5* (HX(IX+1) +HX(IX))
HW=0.5* (HX( IX~-1)+HX(IX))
UE=(HT*U(IX, 1Y, IZ)+HB*U(IX, 1Y, 12+1))/(HT+HB)
UW=(HT*U(IX-1,1Y,I2)+HB*U(IX-1,1Y,612+1))/(HT+HB)
VN=(HT*V(IX,IY, 1Z)+HB*V(IX, 1Y, 12+1))/(HT+HB)
VS=(HT*V(IX,IY-1,12)+HB*V(IX,IY-1,12+1))/(HT+HB)
WE=(HX(IX+1)*W(IX,IY,IZ2)+HX(IX)*W(IX+1,1Y,612))/2./HE
WW=(HX(IX-1)*W(IX, IY,IZ)+HX(IX)*W(I1X-1,1Y,612))/2./HW
WN=(HY(IY+1)*W(IX,IY,I2)+HY(IY)*W(IX,IY+1,12))/2./HEN
WS=(HY(IY-1)*W(IX,IY,IZ)+HY(IY)*W(IX, IY-1,12))/2./HS
U2=0.5* (UE+UW)

VZ=0.5* (VN+VS)

AR=0.5*RE*UZ

BR=0.5*RE*VZ

CR=0.5*RE*W(IX,1Y,12)

CALL COEFF3(AR,BR,CR,HE, HW, HN,HS, HT,HB)
WMMM(IX,IY,I2)=CF(1,1,1)
WMMN(IX,1Y,12)=CF(1,1,2)

WMMP (IX,1Y,I2)=CF(1,1,3)

WMNM( IX, IY,1Z)=CF(1,2,1)
WMNN(IX,IY,I2)=CF(1,2,2)

WMNP (IX,1Y,I12)=CF(1,2,3)

WMPM( IX,1Y,I2)=CF(1,3,1)
WMPN(IX,1Y,I2)=CF(1,3,2)

WMPP (IX,1Y,12)=CF(1,3,3)
WNMM(IX, 1Y, 12)=CF(2,1,1)
WNMN(IX,1Y,12)=CF(2,1,2)

WNMP (IX, 1Y, 1Z)=CF(2,1,3)

WNNM( IX, 1Y, 12)=CF(2,2,1)
WNNN(IX, 1Y, 12)=CF(2,2,2)

WNNP (IX, 1Y, 12)=CF(2,2,3)
WNPM(IX,1Y,12)=CF(2,3,1)

WNPN(IX,1Y,12)=CF(2,3,2

WNPP (IX, 1Y, 12)=CF(2,3,3)
WPMM(IX,1Y,12)=CF(3,1,1)
WPMN(IX,1Y,12)=CF(3,1,2)

WPMP (1X, 1Y, 12)=CF(3,1,3)
WPNM(IX,1Y,12)=CF(3,2,1)
WPNN(IX, 1Y, I2)=CF(3,2,2)
WPNP(IX,1Y,12)=CF(3,2,3)
WPPM(1X,1Y,12)=CF(3,3,1)
WPPN(IX,1Y,12)=CF(3,3,2)
WPPP(IX,1Y,12)=CF(3,3,3)

CW(IX,1Y, I2Z)=WNNN(IX, 1Y, IZ)*RE/(1.+D*WNNN(IX, 1Y, 12))
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222222222 2XXX2X2X22 XXX RRREXXZ 2 RRRXR22 2 R R R ARE 22

CALCULATION OF HIGHER ORDER CORRECTION TERM
FOR Z MOMENTUM EQUATION

I XX 2XX2XXZEEXZXXXX22 X RRRESXRRR AR AR A2 2R R R R AR 2SS

noQOQaQ

E FZ(IX,1Y,IZ2)=RE*(((UE-UZ)*WE-(UW-UZ)*WW)/HX(IX)

ol 1+((VN-VZ)*WN-(VS-VZ)*WS)/HY(IY)+((W2(IX,6 IY,6 12+1)

4 2-W(IX,1Y,I12))*WZ2(IX, 1Y, I12+1)-(WZ(IX,6 1Y,k I2)-W(IX,
31Y,12))*W2(1X,1Y,12))/0.5/(HT+HB))

R R 22222 RXXXXZ 2RSSR XRZZ RS RX SRR AR R 2R 2R R R R R R0 25

DEFINE THE PSEUDOVELOCITY COMPONENT IN Z-DIRECTION
khkkkhhhhhhrr kb hhhh otk thr bt bbb hhd ot ddahs

oNoNoNeN®)

WW1=0.

CF(2,2,2)=0.

DO 209 JX=1,3

DO 209 JvY=1,3

DO 209 JZ2=1,3
209 WW1=WW1+CF(JX,JY,JZ)*W(IX+JX-2,1Y+JY-2,12+J2-2)
210 W1(IX,IY,IZ)=(WW1+WNNN(IX,6 IY,612)*(D*W1(IX,1Y,12)

1-F2(1X,1Y,1I2)))/(1.+D*WNNN(IX,1Y,12))

222222 2XXXX222EX 2SR RS X222 22222 2 R X

CALCULATION OF MASS SOURCE FOR PSEUDOVELOCITIES
KA R R AR b Akt bRt A R AR R R b bbb kA

eNeNoNON®!

DO 480 IX=2, IXMAX
DO 480 I1Y=2, IYMAX
DO 480 1z=2, IZMAX

480 DS(IX,1Y,12)=(Ul(IX,61Y,I12)-Ul(IX-1,1Y,12))/HX(IX)
1+(V1(IX,1Y,12)~V1(IX, 1Y-1,12))/HY(IY)+(W1(IX,6IY,6 I2)
2-W1(IX,I1Y,12-1))/HZ(12)

[ ZZZ XXX EEERREEREER RS EEEAEZXE SRR R R R SRR RA S SR 2 4

UPDATE THE PRESSURE FIELD THROUGH THE DEFINITION
OF PSEUDOVELOCITIES

I ZEEEEEEEEEEEEEZERLA AR A ERZERARRRR AR SRS AR RS RS2

oNeNo Ko Ne Ke!

DO 151 ITER=1, ITERP

DO 155 I1Y=2, IYMAX

DO 155 I1Z=2, IZMAX

DO 160 IX=2, IXMAX
AA(IX)=-CU(IX-1,1Y,12)/HX(IX)
BB(IX)=(CU(IX,1Y,12)+CU(IX-1,1Y,12))/HX(IX)+
1(CV(IX, 1Y, IZ)+CV(IX,1Y-1,12))/HY(IY)+
2(CW(IX,1Y,1Z)+CW(IX,1Y,12-1))/HZ(12)
CC(IX)=-CU(IX,IY,1Z)/HX(IX)
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160 DD(IX)=(CV(IX, IY-1,1Z)*PR(IX, I¥~-1,12)+CV(IX, IY,12)
l*PR(IX,IY+1,IZ))/HY(IY)+(CW(IX,IY,IZ-1)*PR(IX,IY,IZ-1)
2+CW(IX, 1Y, 1Z)*PR(IX,1Y,12+1))/HZ(12)-DS(IX, 1Y, 12)

CALL TRIDAG(2, IXMAX,AA,BB,CC,DD,T)
DO 171 IX=2, IXMAX
171 PR(IX,IY,1Z)=T(IX)
155 CONTINUE
PRO=PR( IXMM, IYMAX, I ZMAX)
DO 159 IX=2, IXMAX
DO 159 1Y=2, IYMAX
DO 159 1Z2=2, IZMAX
159 PR(IX,IY,IZ)=PR(IX,IY,IZ)-PRO
151 CONTINUE

*****ti***itt***#**************************i*******

CALCULATION OF PRESSURE BOUNDARY CONDITIONS
FOR CONTOUR PLOT OF PRESSURE FIELD

*t**************i******t*i*************************

DO 156 IX=2, IXMAX
DO 156 1Y=2, IYMAX
PR(IX,IY,1)=(9.*PR{IX,IY,2)-PR(IX,IY,3))/8.-(8.*
IW(IX,IY,Z)-W(IX,IY,3))*3./16./RE/HZ(2)

156 PR(IX,IY,IZP1)=(9.*PR(IX,IY,IZMAX)-PR(IX,IY,IZMI))/8.+

1(8.*W(IX,IY,IZMl)-W(IX,IY,IZMl-l))*3./16./RE/HZ(IZMAX)
DO 157 1Y=2, IYMAX

DO 157 I2=2, IZMAX
PR(l,IY,IZ)=(9.*PR(2,IY,IZ)-PR(3,IY,IZ))/8.-(8.*U(2,IY,
112)-U(3,1Y,12))*3./16./RE/HX(2)

157 PR(IXPI,IY,IZ)=(9.*PR(IXMAX,IY,IZ)-PR(IXMI,IY,IZ))/8.+

1(8.*U(IXM1,IY,IZ)-U(IXMl-l,IY,IZ))*3./16./RE/HX(IXMAX)
DO 158 IX=2, IXMAX

DO 158 12=2, 1ZMAX
PR(IX,l,IZ)=(9.*PR(IX,2,IZ)-PR(IX,3,IZ))/8.-(8.*V(IX,2,
IIZ)—V(IX,3,IZ))*3./16./RE/HY(2)

158 PR(IX,IYPI,IZ)=PR(IX,IYMAX,IZ)

tiit*i*ttii*tﬁ*t**Q*tti**tﬁ*t*iitttiﬁ***tiiit*it

CALCULATE THE SOURCE TERMS OF MOMENTUM EUATIONS
USING UPDATED PRESSURE GRADIENT TERMS

t*i*iﬁi*titi**ﬁﬁtiiiiti0**#iQ****iiiif*t't'ﬁti*t

DO 301 IX=2, IXM1

DO 301 1Y=2, IYMAX

DO 301 12=2, 1ZMAX

301 FX(IX,IY,IZ)=FX(IX,IY,IZ)+RE’(PR(IX+1,IY,IZ)-PR(IX,IY,

IIZ))/O.5/(HX(IX)‘HX(IX‘1))

DO 302 1Y=2, 1YM]

DO 302 1X=2, IXMAX

DO 302 12=2, 1ZMAX

302 FY(IX,IY,IZ)=FY(IX,IY,IZ)*RE'(PR(IX,IY‘1,12)~PR(IX,IY.
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112))/0.5/(HY(IY)+HY(IY+1))
DO 303 I2=2,12zZM1

DO 303 IX=2, IXMAX

DO 303 IY=2, IYMAX

303 F2(IX,1Y,12)=F2(1X,1Y,I2)+RE*(PR(IX,6 1Y, I12+1)-PR(IX,TIY,

112))/0.5/(HZ(12)+HZ(12+1))

222 222222222 2SR SRR SRR R RS SRR R AR R R RS2

CALCULATION OF VELOCITY FIELD USING THE 28-POINT
FA FORMULA FOR UNSTEADY THREE-DIMENSIONAL
CONVECTIVE TRANSPORT EQUATION

X R R X AR XXX 222 RS2 R 2R X2 A2 X2 R X2 RS R R R ARE R

DO 305 ITER=1, ITERU

DO 330 1Y=2,IYMAX

DO 330 12=2,I12MAX

DO 320 IX=2,IXMl

AA(IX)=-UMNN(IX,1Y,IZ)

BB(IX)=1.+D*UNNN(IX, IY,6 I2)

CC(IX)=-UPNN(IX,IY,6IZ)
DDIX=UMPP(IX,1Y,I12Z2)*U2(IX-1,1IY+1,IZ+1)+UNPP(IX, IY,612)
1*U2(IX,1Y+1,12+1)+UPPP(IX,6 1Y, I2)*U2(IX+1,IY+1,612+1)
2+4UMNP(IX,1Y,I2)*U2(IX-1,1Y,12+1)+UNNP(IX, IY,12)*U2
3(IX,1Y,IZ+1)+UPNP(IX,6 IY,I2)*U2(IX+1,61Y,612+1)+UMMP
4(IX,1Y,1Z)*U2(IX-1,1Y-1,12+1)+UNMP(IX,6IY,612)*U2(IX,
51Y-1,12+1)+UPMP(IX,1Y,I2)*U2(IX+1,1IY-1,12+1)+UMPN(IX,
61Y,12)*U2(IX-1,IY+1,I2)+UNPN(IX,6IY,612)*U2(IX,6 IY+1,
712 +UPPN(IX, 1Y, 12)*U2(IX+1,1Y,12)

320 DD(IX)=DDIX+UMMN(IX, 1Y, I2)*U2(IX-1,1Y-1,12)+UNMN

1(IX,1Y,1Z2)*U2(1X,1Y-1,1I2)+UPMN(IX,61Y,6I2)*U2(1IX+1,
21Y-1,12)+UMPM(IX, 1Y, I2)*U2(IX-1,1Y+1,1Z2-1)+UNPM
3(IX,1Y,12)*U2(1IX,1Y+1,12-1)+UPPM(IX, 1Y,12Z)*U(IX+1,
41Y+1,I2)+UMNM(IX,1Y,12)*U2(IX-1,1Y,I2~-1)+UNNM(IX,
51Y,I1Z2)*U2(IX,1Y,IZ2-1)+UPNM(IX,6IY,6 I2)*U2(1IX+1,1Y,
612-1)+UMMM(IX,1Y,I2)*U2(IX-1,1Y-1,12-1)+UNMM(IX,
71Y,12)*U2(1X,I1Y-1,12-1)+UPMM(IX,1Y,IZ)*U(IX+1,61IY-1,
81Z2-1)+UNNN(IX,1Y,6I2)*(D*U(IX,1Y,I2)-FX(IX,6IY,k12))
DD(2)=DD(2)-AA(2)*U2(1,1Y,12)

DD( I1XM1)=DD(IXM1)-CC(IXM1l)*U2(IXMAX,6 I1Y,6I2)

CALL TRIDAG(2, IXM1,AA,BB,CC,DD,T)

DO 330 IX=2,IXMl

330 U2(IX,1Y,I12)=T(IX)

DO 306 IX=1, IXMAX
DO 306 12=1,12ZP1

306 U2(IX,IYP1,12)=U2(IX,IYMAX, I12)
305 CONTINUE

DO 405 ITER=1, ITERV
DO 430 IX=2, IXMAX

DO 430 12=2, IZMAX

DO 420 1Y=2,1YM1
AA(IY)=-VNMN(IX,61Y,612)
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BB(IY)=1.+D*VNNN(IX,IY,12)

CC(1Y)=-VNPN(IX,IY,IZ)

DDIY=VMPP (IX, IY, IZ)*V2(IX-1,1Y+1,12+1)+UNPP(IX,IY,12)
1*V2(IX,IY+1,12+1)+VPPP(IX,1Y,I1Z)*V2(IX+1,1Y+1,12+1)
2+VMNP (IX, 1Y, 12)*V2(IX-1,1Y, IZ+1)+VUNNP(IX, IY,1Z)*V2(IX,
31Y,12+1)+VPNP(IX, 1Y, 12)*V2(IX+1, 1Y, 12+1)+VMMP(IX, 1Y, 12)
4*V2(IX-1,1Y-1,12+1)+VNMP(IX, IY,12)*V2(IX, IY-1,12+1)
5+VPMP(IX, 1Y, I2)*V2(IX+1,1Y-1,12+1)+VMPN(IX, 1Y, I2)
6*V2(IX-1,1Y+1,I2)+VPNN(IX, 1Y, IZ)*V2(IX+1,1Y,12)+VPPN
7(IX,1Y,12)*V2(IX+1,1Y+1,12)

DD(1Y)=DDIY+VMMN(IX,IY,12)*V2(IX-1,1Y-1,I2)+VMNN
1(IX,IY,12Z)*V2(IX-1,1Y,I2)+VPMN(IX, 1Y, I2)*V2(IX+1,
21Y-1,1Z)+VMPM(IX, 1Y, 1Z)*V2(IX-1,IY+1,12~1)+VNPM
3(IX,IY,12Z)*V2(IX,IY+1,12-1)+VPPM(IX, 1Y, IZ)*V2
4(IX+1,IY+1,12-1)+VMNM(IX, IY,12)*V2(IX-1,1Y,12-1)
5+VNNM(IX, IY, T2)*V2(IX, 1Y, 12-1)+VENM(IX, 1Y, IZ)*V2
6(IX+1, IV, 12-1)+VMMM(IX, IY, IZ)*V2(IX-1,1Y-1,12-1)+
TUNMM(IX, 1Y, IZ)*V2(IX,1Y-1,12-1)+VPMM(IX, 1Y, 1Z)
8*V2(IX+1,1Y-1,I2-1)+VNNN(IX, IY, IZ)*(D*V(IX.1Y,1Z)
9-FY(IX,1Y,12))

DD(2)=DD(2)-AA(2)*V2(IX,1,12)

DD(IYM1)=DD(IYM1)-CC(IYM1)*V2(IX, I[YMAX,1Z)

CALL TRIDAG(2,IYM1,AA,BB,CC,DD,T)

DO 430 Iv=2, IYM1

V2(IX,IY,1Z)=T(IY)

CONT INUE

DO 505 ITER=1, ITERW

DO 530 IX=2, IXMAX

DO 530 I1Y=2, IYMAX

DO 520 I12=2,12Ml

AA(IZ)=-WNNM(IX,1Y,12Z)

BB(IZ)=1.+D*WNNN(IX,1Y,IZ)

CC(IZ, =-WNNP(IX,1Y,12)

DDIZ=WMPP(IX, 1Y, IZ)*W2(IX-1,1Y+1,12+1)+WNPP(IX,1Y,12)
1*#W2(IX,1Y+1,I1Z+1)+WPPP(IX, 1Y, 1Z)*W2(IX+1,1Y+1,12+1)
2+WMNP (IX, 1Y, 12Z)*W2(IX-1,1Y,I2+1)+WPNN(IX, IY, [Z)*W2
3(IX+1,IY,1Z)+WPNP(IX,IY,IZ)*W2(IX+1,1Y, IZ+1)+WMMP
4(IX, 1Y, 1Z)*W2(IX-1,1Y-1,1Z+1)+WNMP(IX, IY, IZ)*W2
5(IX,IY-1,7Z+1)+WPMP(IX, 1Y, IZ)*W2(IX+1, IY-1,12+1)
6+WMPN(IX, 1Y, I2)*W2(IX-1,1Y+1,12)+WNPN(IX, 1Y, IZ)*W2
7(IX, 1Y+1,1Z)+WPPN(IX, 1Y, IZ)*W2(IX+1,1Y+1,12)

520 DD(IZ)=DDIZ+WMMN(IX, 1Y, I12)*W2(IX-1,1Y-1,IZ)+WNMN

l(IX,IY,IZ)*WZ(IX,IY-I,IZ)*WPMN(IX,IY,IZ)*WZ(IX*I,
2IY-1,1Z)+WMPM(IX, IY,IZ)*W2(IX-1,1IY+1,12-1)+WNPM
S(IX, 1Y, IZ)*W2(IX,IY+1,12~1)+WPPM(IX, 1Y, I2Z)*W2
4(IX*1,IY*1,IZ-1)+WMNM(IX,IY,IZ)’WZ(IX-I,IY,IZ-I)
S*WMNN(IX,IY,IZ)*WZ(IX-I,IY,IZ)*WPNM(IX,IY,IZ)*
6W2(IX*1,IY,IZ—l)*WMMM(IX,IY,IZ)*WZ(IX-I,IY—I,IZ-l)
7*WNMM(IX,IY,IZ)*WZ(IX,IY-l,IZ-l)*WPMM(IX,IY,IZ)
B*WZ(IX*l,IY-l,IZ-I)*WNNN(IX,IY,IZ)'(D'W(IX,IY,IZ)
9-F2(IX,1Y,12)!
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DD(2)=DD(2)-AA(2)*W2(IX, 1Y, 1)

DD( I12ZM1)=DD(12M1)-CC(12M1)*W2(IX, 1Y, IZMAX)
CALL TRIDAG(2,I12M1,AA,BB,CC,DD,T)

DO 530 I2=2,12M1

w2 (IX,1Y,I2)=T(12)

DO 506 I2=1, 1ZMAX

DO 506 IX=1,IXP1

W2 (IX,IYP1,1Z)=W2(IX, IYMAX, 12)

CONTINUE

Akhhkhhhkhhhhhrhhrkthr ik dhrbhhhebhhthdhdddttints
CHECK THE CONSERVATION OF MASS

22 2R 222 22X XXX XRXSRRREER SRR R AR R 2 R 08

DO 680 IX=2, IXMAX

DO 680 IY=2, IYMAX

DO 680 12=2, I1ZMAX
DS(IX,1Y,12)=(U2(IX,61Y,72)-U2(IX-1,1Y,12))/BX(IX)
1+(V2(IX,1Y,12)-V2(IX,1Y-1,12))/HY(IY)+(W2(IX, 1Y, 12)

2-W2(1IX,1Y,12-1))/H2(12)

Rhkkhhrrhhkhthrhtirhhbhhhhrthhrrdhhbhbhhhrhhhhhhrrthhtik

CALCULATION OF PRESSURE-CORRECTION IN TERMS OF
MASS SOURCE TERM
Rhkkhbhkhhkh kb rar kbbb bbbk bt thtbohbbbhbhhhhbdhhhs

DO 651 ITER=1, ITERP

DO 655 IY=2, IYMAX

DO 655 12=2,1ZMAX

DO 660 IX=2, IXMAX

AA(IX)=-CU(IX-1,1Y,I12)/HX(IX)
BB(IX)=(CU(IX,1Y,I2)+CU(IX-1,1Y,12))/HX(IX)+(CV
1(IX,1Y,12)+CV(IX,1Y-1,12))/HY(1IY)+(CW(IX,6 1Y, 12)

2+CW(IX,1Y,12-1))/HZ(12)

CC(IX)=~-CU(IX, 1Y,I12)/HX(IX)
DD(IX)=(CV(IX,1Y-1,1Z)*PP(IX,6 IY-1,1I2)+CV(IX, 1Y, I2Z)*
1PP(1IX,1Y+1,12))/HY(1Y)+(CW(IX,61Y,6I12~1)*PP(IX,61IY,612-1)

2+CW(IX,1Y,12)*PP(IX,1Y,12+1))/H2(12)-DS(IX,61Y,I2)

CALL TRIDAG(2, IXMAX,AA,BB,CC,DD,T)
DO 671 IX=2,IXMAX
PP(1X,1Y,I12)=T(IX)

CONTINUE

PPO=PP( IXMM, IYMAX, I1ZMAX)

DO 659 IX=2z, IXMAX

DO 659 1Y=2, IYMAX

DO 659 12=2, IZMAX
PP(IX,1Y,12)=PP(IX,61Y,12)-PPO

CONT INUE

EARARR R R AR ARER AR AR R ARR P RE P A RARARRR R RN ARERRROENROANERS
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CORRECT THE VELOCITY FIELD USING THE
VELOCITY-CORRECTION FORMULA

[ EEXEEEE SRR EEERRR RSS2 R RN RREERREERRR SR RRREEES]

DO 700 IX=1, IXMAX
DO 700 IY=2, IYMAX
DO 700 1z=2, IZMAX
Ul(IX,IY,12)=U(IX,1Y,12)

700 U(IX,1Y,I2)=U2(IX,61Y,I12)-CU(IX, 1Y,12)*

701

1(PP(IX+1,1Y,12)-PP(IX,1Y,I2))
DO 701 IX=1, IXMAX

DO 701 12=1,12P1
U(IX,IYP1,12)=U(IX, IYMAX, I2)
DO 750 1Y=1, IYMAX

DO 750 IX=2, IXMAX

DO 750 12=2, I1ZMAX
V1(IX,1Y,I12)=V(IX,6 1Y,612)

750 V(IX,1Y,I1Z2)=V2(IX, 1Y, I12)-CV(IX,1Y,6I2)*

800

801

1600

2101

1101

2102

1102

2103

1103

2104

1(PP(IX,IY+1,12)-PP(IX,1Y,I2))

DO 800 1X=2, IXMAX

DO 800 IY=2, 1YMAX

DO 800 1Z=1, IZMAX
W1(IX,IY,I2)=W(IX,1Y,12)
W(IX,1Y,12)=W2(IX, 1Y, I1Z)-CW(IX, 1Y, I2)+*
1(PP(IX,IY,IZ+1)-PP(IX, 1Y, 12))

DO 801 12=1, IZMAX

DO 801 1X=1, IXP1

W(IX,IYP1l,I2)=W(IX, IYMAX,I2)
IF(MM.LT.NM) GO TO 1200

MM=0

WRITE(6,1600)IT

FORMAT(//5X, 'NO. OF TIME STEPS =',1S)
WRITE(6,2101)

FORMAT(,///5X, 'VELOCITY IN X-DIRECTION U="')
DO 1101 IX=1, IXMAX

DO 1101 IY=1, IYP1

WRITE(6,1350) (U(IX,1Y,12),12=1,12P1)
WRITE(6,2102)

FORMAT(///SX, 'VELOCITY IN Y-DIRECTION V="')
DO 1102 IY=1, IYMAX

DO 1102 12z=1, IZP1
WRITE(6,1350) (V(IX, 1Y, 12),IX=1, IXP1)
WRITE(6,2103)

FORMAT(///SX, 'VELOCITY IN Z-DIRECTION W=')
DO 1103 12=1, IZMAX

DO 1103 IY=1,1YP1

WRITE(6,1350) (W(IX,1Y,12),IX=1, IXP1)
WRITE(6,2104)

FORMAT(///5X, ' PRESSURE FI1ELD PR=')

DO 1104 '2-1,12P1

DO 1104 I[Y-1,1YP1
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WRITE\ 5,1350) (PR(IX,IY,12), IX=1, IXPl)
WRITE(6,2105)
FORMAT(///5X, ' CONSERVATION OF MASS ')
DO 1105 12=2, IZMAX

DO 1105 IY=2, IYMAX

WRITE(6,1350) (DS(IX,IY,12), IX=2, IXMAX)
FORMAT(7F11.6)

CONTINUE

CALL EXIT

END
N Y 2R 2222 R XA X2 R R S22 A A2 2 2 20 2
SUBROUTINE TRIDAG TO SOLVE THE SYSTEM OF
ALGEBRAIC EQUATIONS

P S S 2 RS S22 XXX SR R R SRS 2 AL 2 L A0 2

SUBROUTINE TRIDAG(IF,L,A,B,C,D,V)

IMPLICIT REAL*8(A-H,0-2)

DIMENSION A(18),B(18),C(18),D(18),V(18),BETA(18),
1GAMMA (18)

BETA(IF)=B({IF)

GAMMA (1F)=D(IF)/BETA(IF)

IFP1=IF+1

DO 1 I=IFP1,L

BETA(1)=B(I)-A(I)*C(1-1)/BETA(I-1)

1 GAMMA(1)=(D(I)-A(I)*GAMMA(I-1))/BETA(I)

2

V(L)=GAMMA (L)

LAST=L-IF

DO 2 K=1,LAST

I=L-K
V(I)=GAMMA(I)-C(I)*V(I+1l)/BETA(I)
RETURN

END

R R R XX 22X SRR RRRR R R 2R X2 R R R R R R LSS

SUBROUTINE COEFF3 TO CALCULATE THE FINITE ANALYTIC
COEFFICIENTS FOR GENERAL NONUNIFORM GRID LOCAL
ELEMENT

'YX 22222222 X XXX RXXSRRRRRRSRRR 22 RR 2R R R R R R 2 R

SUBROUTINE COEFF3 (AR, BR,CR,HE,f HW, HN,6 HS, HT, HB)
IMPLICIT REAL*8(A-H,0-2)
COMMON/AAA/CF(3.,3,3)
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PI=3.141592653589793D0
EPE=0.0001 ;
MAX=5 _ ]
JX=1 i
Jy=1
Jz=1
IF(HE.LT.HW) GO TO 2
JX=-1
AR=-AR
2 IF(HN.LT.HE3) GO TO 3 ;
JY=-1 '
BR=-BR
3 IF(HT.LT.HB) GO TO 4
J2=-1
CR=-CR
4 IF(DABS(AR).LT.EPE)AR=DSIGN(EPE,AR)
IF(DABS(BR).LT.EPE)BR=DSIGN(EPE, BR)
IF(DABS(CR).LT.EPE)CR=DSIGN(EFE, CR)
ABC2=AR*AR+BR*BR+CR*CR
=DMIN1 (HE, HW)
HY=DMINI1 (HN, HS)
HZ=DMINI1 (HT, HB)
AH=AR*HX
BK=BR*HY
CL=CR*HZ
EPA=DEXP (-AH)
EPB=DEXP ( -BK)
EPC=DEXP(-CL)
HXY2=HX*HX/HY/HY
HXZ2=HX*HX/HZ/HZ
EA=0.
EAA=0.
EBB=0.
ECC=0.
DO 10 I=1,MAX
DO 10 J=1,MAX
21=(1-0.5)*PI
2J=(J-0.5)*PI
PWR=(=-1.)**(1+J)*Z1*2J
ABCX=DEXP( (ABC2+Z2I1*21/HY/HY+2J*2ZJ/HZ/HZ)**0.5*HX)
ABCY=DEXP ( (ABC2+ZI1*21/HZ/HZ+2J*2J/HX/HX)*+*0.5*HY)
ABCZ=DEXP ( (ABC2+ZI1*21/HX/HX+ZJ*ZJ/HY/HY)**0.5*HZ)
COSHX=PWR/(ABCX+1. /ABCX)
COSHY=PWR/(ABCY+1./ABCY)
COSHZ=PWR/(ABCZ+1./ABCZ)
EA=EA+(COSHY/(CL*CL+2J*2J)+COSHZ/(BK*BK+2J*2J) )/
1(AH*AH+ZI*2Z2I)**2
EAA=EAA+COSHX/( (BK*BK+ZI*21)*(CL*CL+2J%2J))**2 *
EBB=EBB+COSHY/( (CL*CL+ZI*21)*(AH*AH+2J42J) )**2 -
10 ECC=ECC+COSHZ/( (AH*AH+21*Z1)*(BK*BK+2J*2J))**2 :
COSHA=0.5*EPA+0.5/EPA

-2 PP
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COSHB=0.5*EPB+0.5/EPB
COSHC=0.5*EPC+0.5/EPC
COTHA=(1.+EPA*EPA)/(1.-EPA*EPA)
COTHB=(1.+EPB*EPB)/(1.-EPB*EPB)
COTHC=(1.+EPC*EPC)/(1.-EPC*EPC)
F1=0.125/COSHA/COSHB/COSHC
EB=EA*HXY2+(1./BK/COTHB~-HXY2/AH/COTHA) /2. *F1
EC=EA*HXZ2+(1./CL/COTHC-HXZ2/AH/COTHA) /2. *F1
FA=2 . *AH*COTHA*EA
FB=2. *BK*COTHB*EB
FC=2.*CL*COTHC*EC
GA=4. *BK*CL*COTHB*COTHC*EAA
GB=4.*AH*CL*COTHA*COTHC*EBB
GC=4 . *AH*BK*COTHA*COTHB*ECC
P=F1-FA-FB-FC+GA+GB+GC
QA=2 . *COSHA* (FA-GB-GC)

QB=2 . *COSHB* ( FB-GA-GC)

QC=2 . *COSHC* (FC-GA-~GB)

RA=4 . *COSHB*COSHC*GA

RB=4 . *COSHA*COSHC*GB

RC=4 . *COSHA*COSHB*GC

CNNN=( (AH/COTHA+BK/COTHB +CL/COTHC) /2 . -

1 (AH*AH*EA+BK*BK*EB+CL*CL*EC) /F1)/ABC2
CNET=P*EPA*EPB*EPC
CNWT=P /EPA*EPB*EPC
CSET=P*EPA/EPB*EPC
CSWT=P/EPA/EPB*EPC
CNEB=P*EPA*EPB/EPC
CNWB=P /EPA*EPB/EPC
CSEB=P*EPA/EPB/EPC
CSWB=P/EPA/EPB/EFC
CNCT=QA*EPB*EPC
CSCT=QA/EPB*EPC
CNCB=QA*EPB/EPC
CSCB=QA/EPB/EPC
CECT=QB*EPA*EPC
CWCT=QB/EPA*EPC
CECB=QB*EPA/EPC
CWCB=QB/EPA/EPC
CNEC=QC*EPA*EPB
CNWC=QC/EPA*EPB
CSEC=QC*EPA/EPB
CSWC=QC/EPA/EPR
CEC=RA*EPA
CWC=RA/EPA
CNC=RB*EFPB
CSC=RB/EPB
CTC=RC*EPC
CBC=RC/EPC
1F(DABS (HE-HW) .LT.EPE.AND.DABS (HN-HS) .LT.EPE.AND.

1DABS (HT-HB) .LT.EPS)GO TO 500

391
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HX1=DMAX1 (HE , HW)

HY1=DMAX1 (HN, HS)

HZ1=DMAX1 (HT, HB)

AH1=AR*HX1

BK1=BR*HY1

CL1=CR*HZ1

SEW=HX1* (DEXP (2. *AH)-1.)+HX* (DEXP(-2.*AH1)-1.)
TNS=HY1* (DEXP(2.*BK)-1.)+HY*(DEXP(-2.*BK1)-1.)
RTB=HZ1* (DEXP(2.*CL)-1.)+HZ2*(DEXP(-2.*CL1)-1.)
S=(EPA*EPA+1./EPA/EPA-2. ) *HX1/SEW

S1=S-1.

S2=S*HX/HX1

$3=1.-51-S2 .
T=(EPB*EPB+1./EPB/EPB-2. ) *HY1/TNS

T1=T-1.

T2=T*HY/HY1

T3=1.-T1-T2

R=(EPC*EPC+1./EPC/EPC-2. ) *HZ1/RTB

R1=R-1.

R2=R*HZ/HZ1

R3=1.-R1-R2
FP=1.-S3*CWC-T3*CSC-R3*CBC-S3*T3*CSWC-S3 *R3*CWCB
1-T3*R3*CSCB-S3*T3*R3*CSWB
CF(2+JX,2+JY,2+J2)=(CNET+S1*CNWT+T1*CSET+R1*CNEB+
1S1*T1*CSWT+T1*R1*CSEB+S1*R1*CNWB+S1*T1*R1*CSWB)/FP
CF(2-JX,2+JY,2+J2)=S2* (CNWI+T1*CSWT+R1*CNWB+T1*R1
1*C3WB) /FP
CF(2+JX,2-JY,2+J2)=T2* (CSET+S1*C WT+R1*CSEB+S1*R1
1*CSWB) /FP
CF(2+JX,2+JY,2-J2)=R2*(CNEB+S1*CNWB+T1*CSEB+S1+*T1
1*CSWB) /FP

CF(2-JX,2-JY,2+JZ)=S2*T2* (CSWT+R1*CSWB) /FP
CF(2+JX,2-JY,2-J2)=T2*R2* (CSEB+S1*CSWB) /FP
CF(2-JX,2+JY,2-J2)=S2*R2* (CNWB+T1*CSWB) /FP
CF(2-JX,2-JY,2-J2)=S2*T2*R2*CSWB/FP
CF(2+JX,2,2+J2)=(CECT+S1*CWCT+T3*CSET+R1*CECB+S1*R1
1*CWCB+T3#R1*CSEB+S1*T3*CSWT+S1*T3*R1*CSWB)/FP
CF(2,2+JY,2+J2)=(CNCT+S3*CNWT+T1*CSCT+R1*CNCB+S3*T1
1*CSWT+S3*R1*CNWB+T1*R1*CSCB+S3*T1*R1*CSWB)/FP
CF(2+JX,2+JY, 2)=(CNEC+S1*CNWC+T1*CSEC+R3*CNEB+S1*T1
1*CSWC+S1#*R3*CNWB+T1*R3*CSEB+S1*T1*R3*CSWB)/FP
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CF(2-JX,2,2+J2)=S2*(CWCT+T3*CSWT+R1*CWCB+T3*R1*CSWB) /FP
CF(2,2-JY,2+J2)=T2*(CSCT+S3*CSWT+R1*CSCB+S3*R1*(SWB) /FP
CF(2,2+JY,2-JZ)=R2*(CNCB+S3*CNWB+T1*CSCB+33*T1*CSWB) /FP
CF(2-JX,2+JY,2)=S2*(CNWC+R3*CNWB+T1*CSWC+T1*R3*CSWB) /FP
CF(2+JX,2-JY,2)=T2*(CSEC+R3*CSEB+S1*CSWC+S1*R3*CSWB) /FP
CF(2+JX,2,2-J2)=R2*(CECB+T3*CSEB+S1*CWCB+S1*T3*CSWB) /FP

CF(2-JX,2,2~J2)=S2*R2* (CWCB+T3*CSWB) /FP
CF(2,2-JY,2-J2)=T2*R2*(CSCB+S3*CSWB) /FP
CF(2-JX,2-JY,2)=S2*T2*(CSWC+R3*CSWB)/FP




500

501

Coo0 Lo mE

CF ~0u QuadiiY 1an

CF(2,2,2+J2)=(CTC+R1*CBC+S3*CWCT+T3*CSCT+S3*R1*CWCB
1+T3*R1*CSCB+S3*T3*CSWT+S3*T3+R1*CSWB)/FP
CF(2+JX,2,2)=(CEC+S1*CWC+T3*CSEC+R3*CECB+T3*S1*CSWC
1+R3*S1*CWCB+T3*R3*CSEB+T3*R3*S1*CSWB) /FP
CF(2,2+JY,2)=(CNC+T1*CSC+S3*CNWC+R3*CNCB+S3*T1*CSWC
1+R3*T1*CSCB+S3*R3*CNWB+S3*R3+T1*CSWB) /FP
CF(2,2,2-J2)=R2*(CBC+S3*CWCB+T3*CSCB+S3*T3*CSWB) /FP
CF(2-JX,2,2)=S2*(CWC+R3*CW B+T3*CSWC+T3*R3*CSWB) /FP
CE(2,2-JY,2)=T2*(CSC+S3*CSWC+R3*CSCB+S3*R3*CSWB) /FP
CF(2,2,2)=CNNN/FP

GO TO 501

CF(2+JX,2+JY,2+J2)=CNET

CF(2+JX, 2+JY, 2-J2)=CNEB

CF(2+JX, 2-JY, 2+J2)=CSET

CF(2+JX, 2-JY, 2-J2)=CSEB

CF(2-JX, 2+JY, 2+JZ)=CNWT

CF(2-JX, 2+JY, 2-J2)=CNWB

CF(2-JX, 2-JY,2+J2)=CSWT

CF(2-JX,2-JY,2-J2)=CSWB

CF(2+JX,2+JY,2)=CNEC

CF(2+JX,2-JY, 2)=CSEC

CF(2-JX,2+JY, 2 )=CNWC

CF(2-JX,2-JY,2)=CSWC

CF(2+JX,2,2+J2)=CECT

CF(2+JX,2,2-J2)=CECB

CF(2-JX,2,2+JZ)=CWCT

CF(2-JX, 2,2-J2)=CWCB

CF(2,2+JY,2+J2)=CNCT

CF(2,2+JY,2-J2)=CNCB

CF(2,2-JY,2+J2)=CSCT

CF(2,2-JY,2-J2)=CSCB

CF(2+JX,2,2)=CEC

CF(2-JX,2,2)=CWC

CF(2,2+JY,2)=CNC

CF(2,2-JY,2)=CSC

CF(2,2,2+J2)=CTC

CF(2.2,2-J2)=CBC

CF(2,2,2)=CNNN

RETURN

END
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